河北大学学报(自然科学版) ›› 2017, Vol. 37 ›› Issue (5): 545-554.DOI: 10.3969/j.issn.1000-1565.2017.05.015

• • 上一篇    下一篇

基于时间序列分析的客户项目状态篡改识别算法

陈超凡1,林书新2   

  • 收稿日期:2016-12-01 出版日期:2017-09-25 发布日期:2017-09-25
  • 通讯作者: 林书新(1973—),男,海南海口人,海南经贸职业技术学院副教授,主要从事算法理论与计算机应用研究. E-mail:38860058@qq.com
  • 作者简介:陈超凡(1993—),男,江苏南京人,海南大学在读硕士研究生,主要从事算法理论与软件工程研究. E-mail:75181146@qq.com
  • 基金资助:
    国家自然科学基金资助项目(71361008)

Customer project status tampering algorithm based on time series analysis

CHEN Chaofan1, LIN Shuxin2   

  1. 1.College of Information Science and Technology, Hainan University, Haikou 570228, China; 2.Collegeof Engineering and Technology, Hainan College of Economics and Business, Haikou 571127, China
  • Received:2016-12-01 Online:2017-09-25 Published:2017-09-25

摘要: 为了解决现有客户项目状态篡改识别算法中不能自适应识别篡改类型和无法同时识别出多个项目状态遭受篡改的问题,给出了基于时间序列分析的客户项目状态篡改识别算法,即先划分系统内的评分时间序列区间段,运用 PCA VarSelect算法得出项目状态篡改可疑名单,再进一步缩小识别范围,具体方法是,根据被篡改的时间段,结合评分偏差度确定被篡改状态的项目,在此基础上进一步分析被篡改时间段内的评分,以确定篡改类型,最后识别出相应的被篡改状态的项目.仿真显示,该算法识别精度较高,不仅能识别单个项目的篡改状态,还能同时识别多个项目的篡改状态.

关键词: 项目状态篡改识别, 时间序列分析, PCA, 识别精度

Abstract: The existing customer project status recognition algorithm can not adaptively identify the tampering type and can not simultaneously identify the tampering of multiple project states, the algorithm of tampering recognition based on time series analysis is given. The PCA VarSelect algorithm is used to derive the suspicious list of project status and further reduce the recognition range. The method is to determine the tampering state according to the tampering time period and the score deviation degree.On this basis,this method can further analyze the tampering period of time to determine the type of tampering and finally identify the corresponding tampered state of the project. Simulation shows that the algorithm has high recognition accuracy.It not only can identify the tampering state of a single project, but also can identify the tampering state of multiple projects at the same time.

Key words: project status tampering algorithm, time series analysis, PCA, recognition accuracy

中图分类号: