[1] HUANG C, CHANG Y C, WU S Y. Contact angle analysis of low-temperature cyclonic atmospheric pressure plasma modified polyethylene terephthalate[J]. Thin Solid Films, 2010, 518: 3575. DOI: 10.1016/j.tsf.2009.11.046. [2] HOMOLA T, MATOUSEK J,HERGELOVA B. Activation of poly(ethylene terephthalate)surfaces by atmospheric pressure plasma[J]. Polym Degrad Stab, 2012, 97: 2249. DOI: 10.1016/j.polymdegradstab.2012.08.001. [3] ALZOUBI K, LU S, SAMMAKIA B, et al. Experimental and analytical studies on the high cycle fatigue of thin film metal on PET substrate for flexible electronics applications[J]. IEEE Trans Compon, Packag, Manuf Technol, 2011, 1: 43. DOI:10.1109/TCPMT.2010.2100911. [4] FRANZ R, MAUER A, WELLE F. European survey on post-consumer poly(ethylene terephthalate)(PET)materials to determine contamination levels and maximum consumer exposure from food packages made from recycled PET[J]. Food Addit Contam, 2004, 21: 265. DOI:10.1080/02652030310001655489. [5] RAMIRES P A, MIRENGHI L, ROMANO A R. Contact angle analysis of low-temperature cyclonic atmospheric pressure plasma modified polyethylene terephthalate[J]. Mater Res, 2000, 51: 535. DOI: 10.1016/j.tsf.2009.11.046. [6] REZAEI F, DICKEY M D, BOURHAM M. Surface modification of PET film via a large area atmospheric pressure plasma: An optical analysis of the plasma and surface characterization of the polymer film[J]. Surf Coat Technol, 2017, 309: 371. DOI: 10.1016/j.surfcoat.2016.11.072. [7] PANDIYARAJ K N, DESHMUKH R R,RUZYBAYEV I. Influence of non-thermal plasma forming gases on improvement of surface properties of low density polyethylene(LDPE)[J]. Appl Surf Sci, 2014, 307: 109. DOI: 10.1016/j.apsusc.2014.03.177. [8] PANDIYARAJ K N, KUMAR A A, RAMKUMAR M C. Influence of water vapor addition on the surface modification of polyethylene in an argon dielectric barrier discharge[J]. Curr Appl Phys, 2016, 16: 784. DOI: 10.1002/ppap.201300088. [9] CHEN W, MCCARTHY T J. Chemical Surface Modification of Poly(ethylene terephthalate)[J]. Macromolecules, 1998, 31(11): 3648-3655. DOI: 10.1021/ma9710601. [10] OZDEMIR M, SADIKOGLU H. A new and emerging technology: laser-induced surface modification of polymers[J]. Trends Food Sci. Technol, 1998, 9: 159-167. DOI: 10.1016/S0924-2244(98)00035-1. [11] BURILLO G, TENORIO L, BUCIO E. Electron beam irradiation effects on poly(ethylene terephthalate)[J]. Radiat Phys Chem, 2007, 76: 1728-1731. DOI: 10.1016/j.radphyschem.2007.02.097. [12] YANG S, YIN H. Two Atmospheric-pressure plasma sources for polymer surface modification[J]. Plasma Chem Plasma Process, 2007, 27: 23-33. DOI:10.1007/s11090-006-9041-3. [13] FANG Z, SHAO T, WANG R. Large-area surface modification of polymers using a cold pulsed glow discharge[J]. Eur Phys J A P, 2012, 57(1): 10801. DOI: 10.1051/epjap/2011110281. [14] REN Y, XU L, WANG C. Effect of dielectric barrier discharge treatment on surface nanostructure and wettability of polylactic acid(PLA)nonwoven fabrics[J]. Appl, Surf, Sci, 2017, 426: 612-621. DOI: 10.1016/j.apsusc.2017.07.211. [15] GAO Z. Modification of surface properties of polyamide 6 films with atmospheric pressure plasma[J]. Appl Surf Sci, 2011, 257: 6068-6072. DOI: 10.1016/j.apsusc.2011.01.132. [16] AKBAR D. Surface modification of polypropylene(PP)using single and dual high radio frequency capacitive coupled argon plasma discharge[J]. Appl Surf Sci, 2016, 362: 63-69. DOI: 10.1016/j.apsusc.2015.11.191. [17] DEYNSE A V, COOLS P, LEYS C. Influence of ambient conditions on the aging behavior of plasma-treated polyethylene surfaces[J]. Surf Coat Technol, 2014, 258: 359-367. DOI: 10.1016/j.surfcoat.2014.08.073. [18] ZHENG P, LIU K, WANG J. Surface modification of polyimide(PI)film using water cathode atmospheric pressure glow discharge plasma[J]. Appl Surf Sci, 2012, 259: 494-500. DOI: 10.1016/j.apsusc.2012.07.073. [19] RAJASEKARAN P, MERTMANN P, BIBINOV N. Filamentary and homogeneous modes of dielectric barrier discharge(DBD)in air: investigation through plasma characterization and simulation of surface irradiation[J]. Plasma Process, Polym, 2010, 7:665-675. DOI: 10.1002/ppap.200900175. [20] LIU Y, SU C, REN X. Experimental study on surface modification of PET films under bipolar nanosecond-pulse dielectric barrier discharge in atmospheric air[J]. Appl Surf Sci, 2014, 313: 53-59. DOI: 10.1016/j.apsusc.2014.05.129. [21] WANG C, ZHANG G, WANG X. Surface modification of poly(ethylene terephthalate)(PET)by magnet enhanced dielectric barrier discharge air plasma[J]. Surf. Coat. Technol, 2011, 205: 4993-4999. DOI: 10.1016/j.surfcoat.2011.04.104. [22] NIU Z, ZHANG C, SHAO T. Repetitive nanosecond-pulse dielectric barrier discharge and its application on surface modification of polymers[J]. Surf Coat Technol, 2013, 228: S578-S582. DOI: 10.1016/j.surfcoat.2012.01.007. [23] FANG Z, YANG J, LIU Y. Surface treatment of polyethylene terephthalate to improving hydrophilicity using atmospheric pressure plasma jet[J]. IEEE Trans Plasma Sci, 2013, 41(6): 1627-1634. DOI: 10.1109/tps.2013.2259508. [24] DEYNSE A V, COOLS P, LEYS C. Surface activation of polyethylene with an argon atmospheric pressure plasma jet: Influence of applied power and flow rate[J]. Appl Surf Sci, 2015, 328: 269-278. DOI: 10.1016/j.apsusc.2014.12.075. [25] SHAW D, WEST A, BREDIN J. Mechanisms behind surface modification of polypropylene film using an atmospheric-pressure plasma jet[J]. Plasma Sources Sci Technol, 2016, 25: 065018. DOI: 10.1088/0963-0252/25/6/065018. [26] FANELLI F, FRACASSI F. Atmospheric pressure non-equilibrium plasma jet technology: general features, specificities and applications in surface processing of materials[J].Surf Coat Technol, 2017, 322: 174-201. DOI: 10.1016/j.surfcoat.2017.05.027. [27] IOMOITA E R, IONITA M D, STANCU E C. Small size plasma tools for material processing at atmospheric pressure[J]. Appl. Surf. Sci, 2009, 255: 5448-5452. DOI: 10.1016/j.apsusc.2008.10.082. [28] KOSTOV K G, NISHIME T M C, CASTRO A H R. Surface modification of polymeric materials by cold atmospheric plasma jet[J]. Appl Surf Sci, 2014, 314: 367-375. DOI: 10.1016/j.apsusc.2014.07.009 [29] ONYSHCHENKO I, NIKIFOROV A Y, DEGEYTER N. Local analysis of pet surface functionalization by an atmospheric pressure plasma jet[J]. Plasma Process Polym, 2015, 12: 466-476. DOI: 10.1002/ppap.201400166. [30] CAO Z, WALSH J L, KONG M G. Atmospheric plasma jet array in parallel electric and gas flow fields for three-dimensional surface treatment[J]. Appl Phys Lett, 2009, 94: 021501. DOI: 10.1063/1.3069276. [31] CAO Z, NIE Q, BAYLISS D L. Spatially extended atmospheric plasma arrays[J]. Plasma Sources Sci Technol, 2010,19: 02500. DOI: 10.1088/0963-0252/19/2/025003. [32] AKISHEV Y, GRUSHIN M, DYATKO N. Studies on cold plasma-polymer surface interaction by example of PP- and PET-films[J]. J Phys D: Appl Phys, 2008, 41: 235203. DOI: 10.1088/0022-3727/41/23/235203. [33] LI X C, CHU J D, ZHANG Q. Performance of a large-scale barrier discharge plume improved by an upstream auxiliary barrier discharge[J]. Appl Phys Lett, 2016, 109: 204102. DOI: 10.1063/1.4966558. [34] LI X C, BAO W T, JIA P Y. A brush-shaped air plasma jet operated in glow discharge mode at atmospheric pressure[J]. J Appl Phys, 2014, 116: 023302. DOI: 10.1063/1.4889923. [35] ZHU J, GAO J, LI Z. Sustained diffusive alternating current gliding arc discharge in atmospheric pressure air[J]. Appl Phys Lett, 2014,105: 234102. DOI: 10.1063/1.4903781. |