河北大学学报(自然科学版) ›› 2020, Vol. 40 ›› Issue (2): 200-204.DOI: 10.3969/j.issn.1000-1565.2020.02.013

• • 上一篇    下一篇

基于排序互信息的无监督特征选择

李纯果1,2,张春琴1,李海峰3   

  • 收稿日期:2019-09-20 出版日期:2020-03-25 发布日期:2020-03-25
  • 通讯作者: 李海峰(1980—),男,河北唐县人,河北大学副教授,主要从事数据挖掘、信息分析等方面研究.E-mail:hbulhf@126.com
  • 作者简介:李纯果(1981—),女,河北邯郸人,河北大学副教授,博士,主要从事统计学习、无监督学习排序、信息论、无监督评价等方面的研究. E-mail: licg@hbu.cn
  • 基金资助:
    国家自然科学基金资助项目(61573348);河北省教育厅资助项目(ZC2016157)

Unsupervised feature selection based on ranking mutual information

LI Chunguo1,2,ZHANG Chunqin1,LI Haifeng3   

  1. 1.College of Mathematics and Information Science, Hebei University, Baoding 071002, China; 2.Hebei Key Laboratory of Machine Learning and Computational Intelligence, Baoding 071002, China; 3.Department of Computer Teaching, Hebei University, Baoding 071002, China
  • Received:2019-09-20 Online:2020-03-25 Published:2020-03-25

摘要: 根据排序问题的单调先验知识,无监督学习问题中的观测属性之间也具备单调关系;否则该属性与排序无关,为冗余属性.基于排序互信息反应的两属性之间的单调关系,提出用每个属性与其他属性之间的平均互信息,来衡量每个属性与排序学习的相关程度,具有最高的平均互信息即为排序最相关的属性.

关键词: 无监督排序, 特征选择, 排序互信息

Abstract: Based on ranking prior knowledge of monotonicity,each observation attribute should be monotonic with the other observation attributes for unsupervised ranking problems.Otherwise,the attribute would be irrelevant with ranking and should be assumed to a redundant attribute.Based on the ranking mutual information,which reflects the monotonic degree between observation attributes and the order sequence,mean ranking mutual information is proposed to measure the monotonicity between observation attributes.The most relevant attributes should be with the biggest ranking mutual information.

Key words: unsupervised ranking, feature selection, ranking mutual information

中图分类号: