[1] GANTER B, WILLE R. Formal concept analysis: mathematical foundations[M].Berlin:Springer-Verlag, 1999. [2] WILLE R. Restructuring lattice theory: an approach based on hierarchies of concepts[M] //Ordered Sets. Dordrecht: Springer.Netherlands, 1982: 445-470. DOI:10.1007/978-94-009-7798-3_15. [3] ZHANG Z X, LI Q G, ZHANG N. M-Algebraic lattices in formal concept analysis[J]. Math Struct Comp Sci, 2019, 29(10): 1556-1574. DOI:10.1017/s0960129519000124. [4] LI J H, REN Y, MEI C L, et al. A comparative study of multigranulation rough sets and concept lattices via rule acquisition[J]. Knowl-Based Syst, 2016, 91: 152-164. DOI:10.1016/j.knosys.2015.07.024. [5] SUMANGALI K, CH A K. Concept lattice simplification in formal concept analysis using attribute clustering[J]. J Ambient Intell Human Comput, 2019, 10(6): 2327-2343. DOI:10.1007/s12652-018-0831-2. [6] SINGH P K. Complex fuzzy concept lattice[J]. Neural Process Lett, 2019, 49(3): 1511-1526. DOI:10.1007/s11063-018-9884-7. [7] PRISS U. Formal concept analysis in information science[J]. Ann Rev Info Sci Tech, 2007, 40(1): 521-543.DOI:10.1002./aris.1440400120. [8] AGRAWAL R, IMIELIN 'SKI T, SWAMI A. Mining association rules between sets of items in large databases[C].Proceedings of the 1993 ACM SIGMOD international conference on Management of data. New York: ACM Press, 1993: 207-216. DOI:10.1145/170035.170072. [9] 付沙,周航军.关联规则挖掘Apriori算法的研究与改进[J].微电子学与计算机,2013, 30(9): 110-114. DOI:10.19304/j.c-nki.issn1000-7180.2013.09.028. [10] NAÏM H, AZNAG M, DURAND N, et al. Semantic pattern mining based web service recommendation[M]. Cham: Springer International Publishing, 2016: 417-432. [11] JANOSTIK R, KONECNY J. General framework for consistencies in decision contexts[J]. Inf Sci, 2020, 530: 180-200. DOI:10.1016/j.ins.2020.02.045. [12] DAMOUR G, NAVAS M L, GARNIER E. A revised trait-based framework for agroecosystems including decision rules[J]. J Appl Ecol, 2018, 55(1): 12-24. DOI:10.1111/1365-2664.12986.. [13] 翟悦,何丹丹.基于概念格的频繁闭项集挖掘方法[J].计算机应用与软件,2014,31(11):54-57. DOI:10.3969/j.issn.1000386x.2014.11.013. [14] 朱坤,黄瑞章,张娜娜.一种基于MapReduce模型的高效频繁项集挖掘算法[J].计算机科学,2017, 44(7): 31-37. DOI:10.11896/j.issn.1002-137X.2017.07.006. [15] 罗明,孟传伟,黄海量.基于加权频繁模式树的通信网络告警规则挖掘方法[J].计算机工程,2016, 42(4): 190-196. DOI:10.3969/j.issn.1000-3428.2016.04.034. [16] 徐嘉莉,杨洪军,赵茂娟,等.一种基于位运算的频繁闭项集挖掘算法[J].计算机应用研究, 2013, 30(11): 3280-3282, 3286. DOI:10.3969/j.issn.1001-3695.2013.11.018. [17] 魏玲,祁建军,张文修.决策形式背景的概念格属性约简[J].中国科学:E辑,2008, 38(2): 195-208. [18] LI J H, MEI C L, KUMAR C A, et al. On rule acquisition in decision formal contexts[J]. Int J Mach Learn & Cyber, 2013,4(6): 721-731. DOI:10.1007/s13042-013-0150-z. [19] 张菁,魏玲.序决策形式背景的规则提取及属性约简[J].模式识别与人工智能,2016, 29(11): 976-984. DOI:10.16451/j.cnki.issn1003-6059.201611003. [20] 翟岩慧,李德玉,曲开社.决策蕴涵规范基[J].电子学报, 2015, 43(1): 18-23. DOI:10.3969/j.issn.0372-2112.2015.01.004. [21] LI J Y, WANG X, WU W Z, et al. Attribute reduction in inconsistent formal decision contexts based on congruence relations[J]. Int J Mach Learn & Cyber, 2017, 8(1): 81-94. DOI:10.1007/s13042-016-0586-z. [22] 刘琳,钱婷,魏玲.基于属性导出三支概念格的决策背景规则提取[J].西北大学学报(自然科学版),2016, 46(4): 481-487. DOI:10.16152/j.cnki.xdxbzr.2016-04-003. [23] 刘琳,魏玲,钱婷.决策形式背景中具有置信度的三支规则提取[J].山东大学学报(理学版),2017, 52(2): 101-110. DOI:10.6040/j.issn.1671-9352.0.2016.384. [24] 张文修,魏玲,祁建军.概念格的属性约简理论与方法[J].中国科学:E辑,2005, 35(6): 628-639. DOI:10.3321/j.issn:1006-9275.2005.06.006. [25] PASQUIER N, BASTIDE Y, TAOUIL R, et al. Efficient mining of association rules using closed itemset lattices[J].1999, 24(1): 25-46. DOI:10.1016/s0306-4379(99)00003-4. [26] 谢志鹏,刘宗田.概念格的快速渐进式构造算法[J].计算机学报,2002, 25(5): 490-496. DOI:10.3321/j.issn:0254-4164.2002.05.006. [27] ZOU L G, ZHANG Z P, LONG J. A fast incremental algorithm for constructing concept lattices[J]. Expert Syst Appl, 2015, 42(9): 4474-4481. DOI:10.1016/j.eswa.2015.01.044. [28] ZAKI M J, HSIAO C J. Efficient algorithms for mining closed itemsets and their lattice structure[J]. IEEE Trans Knowl Data Eng, 2005, 17(4): 462-478. DOI:10.1109/tkde.2005.60. ( |