[1] TWAHA S, ZHU J, YAN Y Y, et al. A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement[J]. Renew Sustain Energy Rev, 2016, 65: 698-726. DOI:10.1016/j.rser.2016.07.034. [2] HE J, TRITT T M. Advances in thermoelectric materials research: looking back and moving forward[J]. Science, 2017, 357(6358): eaak9997. DOI:10.1126/science.aak9997. [3] XU B, FENG T L, LI Z, et al. Large-scale, solution-synthesized nanostructured composites for thermoelectric applications[J]. Adv Mater, 2018, 30(48): 1801904. DOI:10.1002/adma.201801904. [4] MAO J, CHEN G, REN Z F. Thermoelectric cooling materials[J]. Nat Mater, 2021, 20(4): 454-461. DOI:10.1038/s41563-020-00852-w. [5] ASWAL D K, BASU R, SINGH A. Key issues in development of thermoelectric power generators: high figure-of-merit materials and their highly conducting interfaces with metallic interconnects[J]. Energy Convers Manag, 2016, 114: 50-67. DOI:10.1016/j.enconman.2016.01.065. [6] DOMÍNGUEZ-ADAME F, MARTÍN-GONZÁLEZ M, SÁNCHEZ D, et al. Nanowires: a route to efficient thermoelectric devices[J]. Physica E Low Dimens Syst Nanostruct, 2019, 113: 213-225. DOI:10.1016/j.physe.2019.03.021. [7] CHEN Y, HOU X N, MA C Y, et al. Review of development status of Bi2Te3-based semiconductor thermoelectric power generation[J]. Adv Mater Sci Eng, 2018, 2018: 1210562. DOI:10.1155/2018/1210562. [8] MA Z, WEI J T, SONG P S, et al. Review of experimental approaches for improving ZT of thermoelectric materials[J]. Mater Sci Semicond Process, 2021, 121: 105303. DOI:10.1016/j.mssp.2020.105303. [9] ZHAO C, LI Z, FAN T, et al. Defects engineering with multiple dimensions in thermoelectric materials[J]. Research(Wash D C), 2020, 2020: 9652749. DOI:10.34133/2020/9652749. [10] YAN X, POUDEL B, MA Y, et al. Experimental studies on anisotropic thermoelectric properties and structures of n-type Bi2Te2.7Se0.3[J]. Nano Lett, 2010, 10(9): 3373-3378. DOI:10.1021/nl101156v. [11] ZHAO Y, BURDA C. Chemical synthesis of Bi(0.5)Sb(1.5)Te3 nanocrystals and their surface oxidation properties[J]. ACS Appl Mater Interfaces, 2009, 1(6): 1259-1263. DOI:10.1021/am900148d. [12] YIM W M, ROSI F D. Compound tellurides and their alloys for Peltier cooling-A review[J]. Solid State Electron, 1972, 15(10): 1121-1140. DOI:10.1016/0038-1101(72)90172-4. [13] ZHENG Y, XIE H Y, ZHANG Q, et al. Unraveling the critical role of melt-spinning atmosphere in enhancing the thermoelectric performance of p-type Bi0.52Sb1.48Te3 alloys[J]. ACS Appl Mater Interfaces, 2020, 12(32): 36186-36195. DOI:10.1021/acsami.0c09656. [14] BAO D Y, CHEN J, YU Y, et al. Texture-dependent thermoelectric properties of nano-structured Bi2Te3[J]. Chem Eng J, 2020, 388: 124295. DOI:10.1016/j.cej.2020.124295. [15] WANG Y, LIU W D, SHI X L, et al. Enhanced thermoelectric properties of nanostructured n-type Bi2Te3 by suppressing Te vacancy through non-equilibrium fast reaction[J]. Chem Eng J, 2020, 391: 123513. DOI:10.1016/j.cej.2019.123513. [16] WU F, SONG H Z, GAO F, et al. Effects of different morphologies of Bi2Te3 nanopowders on thermoelectric properties[J]. J Electron Mater, 2013, 42(6): 1140-1145. DOI:10.1007/s11664-013-2541-z. [17] WU F, SONG H Z, JIA J F, et al. Effects of Ce, Y, and Sm doping on the thermoelectric properties of Bi2Te3 alloy[J]. Prog Nat Sci Mater, 2013, 23(4): 408-412. DOI:10.1016/j.pnsc.2013.06.007. [18] 周欢欢,檀柏梅,张建新,等. Bi2Te3热电材料研究现状[J].半导体技术, 2011, 36(10): 765-770, 777. [19] ZHAO Q, WANG Y G. A facile two-step hydrothermal route for the synthesis of low-dimensional structured Bi2Te3 nanocrystals with various morphologies[J]. J Alloys Compd, 2010, 497(1/2): 57-61. DOI:10.1016/j.jallcom.2010.03.077. [20] DENG Y, NAN C W, WEI G D, et al. Organic-assisted growth of bismuth telluride nanocrystals[J]. Chem Phys Lett, 2003, 374(3/4): 410-415. DOI:10.1016/S0009-2614(03)00783-8. [21] LIU W S, YAN X, CHEN G, et al. Recent advances in thermoelectric nanocomposites[J]. Nano Energy, 2012, 1(1): 42-56. DOI:10.1016/j.nanoen.2011.10.001. [22] SNYDER G J, TOBERER E S. Complex thermoelectric materials[J]. Nat Mater, 2008, 7(2): 105-114. DOI:10.1038/nmat2090. [23] WANG S Y, XIE W J, LI H, et al. Enhanced performances of melt spun Bi2(Te, Se)3 for n-type thermoelectric legs[J]. Intermetallics, 2011, 19(7): 1024-1031. DOI:10.1016/j.intermet.2011.03.006. [24] YU F R, XU B, ZHANG J J, et al. Structural and thermoelectric characterizations of high pressure sintered nanocrystalline Bi2Te3 bulks[J]. Mater Res Bull, 2012, 47(6): 1432-1437. DOI:10.1016/j.materresbull.2012.02.045. [25] YANG L, CHEN Z G, HONG M, et al. Enhanced thermoelectric performance of nanostructured Bi2Te3 through significant phonon scattering[J]. ACS Appl Mater Interfaces, 2015, 7(42): 23694-23699. DOI:10.1021/acsami.5b07596. [26] FU J P, SONG S Y, ZHANG X G, et al. Bi2Te3 nanoplates and nanoflowers: Synthesized by hydrothermal process and their enhanced thermoelectric properties[J]. Cryst Eng Comm, 2012, 14(6): 2159. DOI:10.1039/c2ce06348d. [27] ZHANG Y C, DAY T, SNEDAKER M L, et al. A mesoporous anisotropic n-type Bi2Te3 monolith with low thermal conductivity as an efficient thermoelectric material[J]. Adv Mater, 2012, 24(37): 5065-5070. DOI:10.1002/adma.201201974. ( |