[1] SHARPLESS C M, BLOUGH N V. The importance of charge-transfer interactions in determining chromophoric dissolved organic matter(CDOM)optical and photochemical properties[J]. Environ Sci Process Impacts, 2014, 16(4): 654-671. DOI: 10.1039/c3em00573a. [2] LIU D, DU Y X, YU S J, et al. Human activities determine quantity and composition of dissolved organic matter in lakes along the Yangtze River[J]. Water Res, 2020, 168: 115132. DOI: 10.1016/j.watres.2019.115132. [3] SONG F H, WU F C, FENG W Y, et al. Depth-dependent variations of dissolved organic matter composition and humification in a plateau lake using fluorescence spectroscopy[J]. Chemosphere, 2019, 225: 507-516. DOI: 10.1016/j.chemosphere.2019.03.089. [4] ZHOU Y Q, ZHANG Y L, SHI K, et al. Lake Taihu, a large, shallow and eutrophic aquatic ecosystem in China serves as a sink for chromophoric dissolved organic matter[J]. J Gt Lakes Res, 2015, 41(2): 597-606. DOI: 10.1016/j.jglr.2015.03.027. [5] ZHANG Y L, LIU X H, OSBURN C L, et al. Photobleaching response of different sources of chromophoric dissolved organic matter exposed to natural solar radiation using absorption and excitation-emission matrix spectra[J]. PLoS One, 2013, 8(10): e77515. DOI: 10.1371/journal.pone.0077515. [6] ZHOU L, ZHOU Y Q, YAO X L, et al. Decreasing diversity of rare bacterial subcommunities relates to dissolved organic matter along permafrost thawing gradients[J]. Environ Int, 2020, 134: 105330. DOI: 10.1016/j.envint.2019.105330 [7] WANG X N, WU Y, BAO H Y, et al. Sources, transport, and transformation of dissolved organic matter in a large river system: illustrated by the Changjiang River, China[J]. J Geophys Res Biogeosci, 2019, 124(12): 3881-3901. DOI: 10.1029/2018jg004986. [8] SHANG Y X, SONG K S, JACINTHE P A, et al. Characterization of CDOM in reservoirs and its linkage to trophic status assessment across China using spectroscopic analysis[J]. J Hydrol, 2019, 576: 1-11. DOI: 10.1016/j.jhydrol.2019.06.028. [9] DAINARD P G, GUéGUEN C, YAMAMOTO-KAWAI M, et al. Interannual variability in the absorption and fluorescence characteristics of dissolved organic matter in the Canada Basin polar mixed waters[J]. J Geophys Res Oceans, 2019, 124(7): 5258-5269. DOI: 10.1029/2018jc014896. [10] TAO P R, JIN M, YU X B, et al. Spatiotemporal variations in chromophoric dissolved organic matter(CDOM)in a mixed land-use river: implications for surface water restoration[J]. J Environ Manag, 2021, 277: 111498. DOI: 10.1016/j.jenvman.2020.111498. [11] KIM J, KIM Y, PARK S E, et al. Impact of aquaculture on distribution of dissolved organic matter in coastal Jeju Island, Korea, based on absorption and fluorescence spectroscopy[J]. Environ Sci Pollut Res Int, 2022, 29(1): 553-563. DOI: 10.1007/s11356-021-15553-3. [12] CARSTEA E M, BAKER A, BIEROZA M, et al. Characterisation of dissolved organic matter fluorescence properties by PARAFAC analysis and thermal quenching[J]. Water Res, 2014, 61: 152-161. DOI: 10.1016/j.watres.2014.05.013. [13] LI Y Z, ZHANG Y B, LI Z, et al. Characterization of colored dissolved organic matter in the northeastern South China Sea using EEMs-PARAFAC and absorption spectroscopy[J]. J Sea Res, 2022, 180: 102159. DOI: 10.1016/j.seares.2021.102159. [14] VILA DUPLÁ M. Characterization of cDOM in the Elkhorn Slough Estuary using EEM spectroscopy and its potential for macrophyte monitoring[J]. J Mar Syst, 2022, 226: 103661. DOI: 10.1016/j.jmarsys.2021.103661. [15] SONG K S, SHANG Y X, WEN Z D, et al. Characterization of CDOM in saline and freshwater lakes across China using spectroscopic analysis[J]. Water Res, 2019, 150: 403-417. DOI: 10.1016/j.watres.2018.12.004. [16] JIN M Y, LEE J J, OH H J, et al. The response of catchment ecosystems in eutrophic agricultural reservoirs to water quality management using DOM fluorescence[J]. Sustainability, 2019, 11(24): 7207. DOI: 10.3390/su11247207. [17] GE Z K, GAO L, MA N, et al. Variation in the content and fluorescent composition of dissolved organic matter in soil water during rainfall-induced wetting and extract of dried soil[J]. Sci Total Environ, 2021, 791: 148296. DOI: 10.1016/j.scitotenv.2021.148296. [18] LAMBERT T, BOUILLON S, DARCHAMBEAU F, et al. Shift in the chemical composition of dissolved organic matter in the Congo River network[J]. Biogeosciences, 2016, 13(18): 5405-5420. DOI: 10.5194/bg-13-5405-2016. [19] REN W X, WU X D, GE X G, et al. Characteristics of dissolved organic matter in lakes with different eutrophic levels in southeastern Hubei Province, China[J].J Oceanol Limnol, 2021, 39(4): 1256-1276. DOI: 10.1007/s00343-020-0102-x. [20] DE HAAN H, DE BOER T. Applicability of light absorbance and fluorescence as measures of concentration and molecular size of dissolved organic carbon in humic Lake Tjeukemeer[J]. Water Res, 1987, 21(6): 731-734. DOI: 10.1016/0043-1354(87)90086-8. [21] WEISHAAR J L, AIKEN G R, BERGAMASCHI B A, et al. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon[J]. Environ Sci Technol, 2003, 37(20): 4702-4708. DOI: 10.1021/es030360x. [22] HELMS J R, STUBBINS A, RITCHIE J D, et al. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter[J]. Limnol Oceanogr, 2008, 53(3): 955-969. DOI: 10.4319/lo.2008.53.3.0955. [23] JAFFÉ R, MCKNIGHT D, MAIE N, et al. Spatial and temporal variations in DOM composition in ecosystems: the importance of long-term monitoring of optical properties[J]. J Geophys Res, 2008, 113:G04032. DOI: 10.1029/2008jg000683. [24] HUGUET A, VACHER L, RELEXANS S, et al. Properties of fluorescent dissolved organic matter in the Gironde Estuary[J]. Org Geochem, 2009, 40(6): 706-719. DOI: 10.1016/j.orggeochem.2009.03.002. [25] ZHOU Y Q, SHI K, ZHANG Y L, et al. Fluorescence peak integration ratio IC: IT as a new potential indicator tracing the compositional changes in chromophoric dissolved organic matter[J]. Sci Total Environ, 2017, 574: 1588-1598. DOI: 10.1016/j.scitotenv.2016.08.196. [26] STEDMON C A, BRO R. Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial[J]. Limnol Oceanogr Methods, 2008, 6(11): 572-579. DOI: 10.4319/lom.2008.6.572b. [27] DERRIEN M, KIM M S, OCK G, et al. Estimation of different source contributions to sediment organic matter in an agricultural-forested watershed using end member mixing analyses based on stable isotope ratios and fluorescence spectroscopy[J]. Sci Total Environ, 2018, 618: 569-578. DOI: 10.1016/j.scitotenv.2017.11.067. [28] LAMBERT T, BOUILLON S, DARCHAMBEAU F, et al. Effects of human land use on the terrestrial and aquatic sources of fluvial organic matter in a temperate river basin(The Meuse River, Belgium)[J].Biogeochemistry, 2017, 136(2): 191-211. DOI: 10.1007/s10533-017-0387-9. [29] CHEN B F, HUANG W, MA S Z, et al. Characterization of chromophoric dissolved organic matter in the littoral zones of eutrophic lakes taihu and Hongze during the algal bloom season[J].Water, 2018, 10(7):861-861. [30] CHEN M L, KIM J H, NAM S I, et al. Production of fluorescent dissolved organic matter in Arctic Ocean sediments[J]. Sci Rep, 2016, 6: 39213. DOI: 10.1038/srep39213. [31] LU K T, GAO H J, YU H B, et al. Insight into variations of DOM fractions in different latitudinal rural black-odor waterbodies of Eastern China using fluorescence spectroscopy coupled with structure equation model[J]. Sci Total Environ, 2022, 816: 151531. DOI: 10.1016/j.scitotenv.2021.151531. [32] SHARMA P, LAOR Y, RAVIV M, et al. Compositional characteristics of organic matter and its water-extractable components across a profile of organically managed soil[J]. Geoderma, 2017, 286: 73-82. DOI: 10.1016/j.geoderma.2016.10.014. [33] GAO Z Y, GUÉGUEN C. Size distribution of absorbing and fluorescing DOM in Beaufort Sea, Canada Basin[J]. Deep Sea Res Part I Oceanogr Res Pap, 2017, 121: 30-37. DOI: 10.1016/j.dsr.2016.12.014. [34] HONG H L, WU S J, WANG Q, et al. Fluorescent dissolved organic matter facilitates the phytoavailability of copper in the coastal wetlands influenced by artificial topography[J]. Sci Total Environ, 2021, 790: 147855. DOI: 10.1016/j.scitotenv.2021.147855. [35] SØNDERGAARD M, STEDMON C A, BORCH N H. Fate of terrigenous dissolved organic matter(DOM)in estuaries: aggregation and bioavailability[J]. Ophelia, 2003, 57(3): 161-176. DOI: 10.1080/00785236.2003.10409512. [36] LI P H, CHEN L, ZHANG W, et al. Spatiotemporal distribution, sources, and photobleaching imprint of dissolved organic matter in the Yangtze Estuary and its adjacent sea using fluorescence and parallel factor analysis[J]. PLoS One, 2015, 10(6): e0130852. DOI: 10.1371/journal.pone.0130852. [37] LEE S A, KIM T H, KIM G. Tracing terrestrial versus marine sources of dissolved organic carbon in a coastal bay using stable carbon isotopes[J]. Biogeosciences, 2020, 17(1): 135-144. DOI: 10.5194/bg-17-135-2020. [38] OSBURN C L, WIGDAHL C R, FRITZ S C, et al. Dissolved organic matter composition and photoreactivity in prairie lakes of the U.S. Great Plains[J]. Limnol Oceanogr, 2011, 56(6): 2371-2390. DOI: 10.4319/lo.2011.56.6.2371. [39] ZHANG Y L, VAN DIJK M A, LIU M L, et al. The contribution of phytoplankton degradation to chromophoric dissolved organic matter(CDOM)in eutrophic shallow lakes: field and experimental evidence[J]. Water Res, 2009, 43(18): 4685-4697. DOI: 10.1016/j.watres.2009.07.024. [40] 陈昭宇,李思悦.三峡库区城镇化背景下河流DOM的吸收及荧光光谱特征[J].环境科学, 2019, 40(12): 5309-5317. DOI: 10.13227/j.hjkx.201904196. [41] BERGGREN M, STRÖM L, LAUDON H, et al. Lake secondary production fueled by rapid transfer of low molecular weight organic carbon from terrestrial sources to aquatic consumers[J]. Ecol Lett, 2010, 13(7): 870-880. DOI: 10.1111/j.1461-0248.2010.01483.x. [42] 王书航,王雯雯,姜霞,等.基于三维荧光光谱—平行因子分析技术的蠡湖CDOM分布特征[J].中国环境科学, 2016, 36(2): 517-524. DOI: 10.3969/j.issn.1000-6923.2016.02.031. ( |