[1] HAYNES T W, HEDETNIEMI S T, SLATER P J. Fundamentals of domination in graphs[M]. New York: Marcel Dekker, 1998. [2] AHANGAR H A, AMJADI J, SHEIKHOLESLAMI S M,et al. Signed Roman edge domination numbers in graphs[J]. J Comb Optim, 2016, 31: 333-346. [3] BENSON K F, FERRERO D, FLAGG M, et al. Nordhaus-Gaddum problems for power domination[J]. Discrete Appl Math, 2018, 251: 103-113.DOI: 10.1016/j.dam.2018.06.004. [4] FAN W J, YE A S, MIAO F, et al. Outer-independent Italian domination in graphs[J]. IEEE Access, 2019, 7: 22756-22762.DOI: 10.1109/ACCESS.2019.2899875. [5] HENNING M A, PAL S, PRADHAN D. Algorithm and hardness results on hop domination in graphs[J]. Inform Process Lett, 2020, 153:105872.DOI: 10.1016/j.ipl.2019.105872. [6] 郝国亮,钱建国.有向图出控制数与入控制数的和[J].厦门大学学报(自然科学版),2015, 54(3): 351-353.DOI: 10.6043/j.issn.0438-0479.2015.03.010. [7] OULDRABAH L, BLIDIA M, BOUCHOU A. Extremal digraphs for an upper bound on the Roman domination number[J]. J Comb Optim, 2019, 38: 667-679.DOI: 10.1007/s10878-019-00401-5. [8] 赵衍才,单而芳.关于图的符号混合控制[J].应用数学学报,2020, 43(6): 915-922. DOI: 10.12387/C2020067. [9] CHEN X. A note on the double Roman domination number of graphs[J]. Czechoslovak Math J, 2020, 70: 205-212. DOI: 10.21136/CMJ.2019.0212-18. [10] HENNING M A, JAFARI RAD N. A characterization of double Roman trees [J]. Discrete Appl Math, 2019, 259: 100-111. DOI: 10.1016/j.dam.2018.12.033. [11] JAFARI RAD N, RAHBANI H. Some progress on the double Roman domination in graphs [J]. Discuss Math Graph Theory, 2019, 39: 41-53. DOI: 10.7151/dmgt.2069. [12] BONDY J A, MURTY U S R. Graph theory with applications [M]. London: Macmillan Press Ltd, 1976. [13] BEELER R A, HAYNES T W, HEDETNIEMI S T. Double Roman domination[J]. Discrete Appl Math, 2016, 211: 23-29. DOI: 10.1016/j.dam.2016.03.017. ( |