[1] 李永波,徐敏强,赵海洋,等.基于层次模糊熵和改进支持向量机的轴承诊断方法研究[J].振动工程学报, 2016, 29(1):184-192. DOI: 10.16385/j.cnki.issn.1004-4523.2016.01.023. [2] 刘玉鑫,武文博,张雄,等.基于HHO-CNN的轴承故障诊断方法研究[J].河北大学学报(自然科学版),2023,43(6):571-583.DOI: 10.3969/j.issn.1000-1565.2023.06.002. [3] 邓飞跃,王红力,高瑞洋,等.轮轨激励条件下轴箱轴承内圈故障振动特性分析[J].河北大学学报(自然科学版),2023,43(6):561-570.DOI: 10.3969.j.issn.1000-1565.2023.06.001. [4] MOSHREFZADEH A, FASANA A. The Autogram: an effective approach for selecting the optimal demodulation band in rolling element bearings diagnosis[J]. Mech Syst Signal Process, 2018, 105: 294-318. DOI:10.1016/j.ymssp.2017.12.009. [5] 桂伟,陈鑫,叶新来.基于时频域多指标融合和图模型的滚动轴承早期退化监测方法[J].机电工程, 2022, 39(9):1256-1261. DOI: 10.3969/j.issn.1001-4551.2022.09.011. [6] 郑近德,王兴龙,潘海洋,等.基于自适应自相关谱峭度图的滚动轴承故障诊断方法[J].中国机械工程, 2021, 32(7):778-785, 792. DOI: 10.3969/j.issn.1004-132X.2021.07.003. [7] 郑直,李显泽,朱勇,等.基于SGMD-Autogram的液压泵故障诊断方法研究[J].振动与冲击, 2020, 39(23):234-241. DOI: 10.13465/j.cnki.jvs.2020.23.033. [8] 王慧滨,剡昌锋,孟佳东,等.融合Autogram的共振解调和1.5维谱的滚动轴承复合故障诊断方法[J].振动工程学报, 2022, 35(6):1541-1551. DOI: 10.16385/j.cnki.issn.1004-4523.2022.06.026. [9] 王兴龙,郑近德,潘海洋,等.基于MED与自相关谱峭度图的滚动轴承故障诊断方法[J].振动与冲击, 2020, 39(18):118-124, 131. DOI: 10.13465/j.cnki.jvs.2020.18.015. [10] 杨雨竹,李耀明,周进杰.基于三分法EMD和Autogram的滚动轴承故障诊断[J].电子测量技术, 2021, 44(23):151-157. DOI: 10.19651/j.cnki.emt.2107810. [11] 胥永刚,李爽,张坤,等.改进Autogram方法及其在滚动轴承故障诊断中的应用[J].轴承, 2021(11):53-58. DOI: 10.19533/j.issn1000-3762.2021.11.009. [12] 冯泽仲,熊新,王晓东.基于均值散布负熵信息图的单向阀早期故障诊断方法[J].振动与冲击, 2022, 41(13):211-219. DOI: 10.13465/j.cnki.jvs.2022.13.027. [13] ANTONI J. The spectral kurtosis: a useful tool for characterising non-stationary signals[J]. Mech Syst Signal Process, 2006, 20(2):282-307. DOI: 10.1016/j.ymssp.2004.09.001. [14] 鄢小安,贾民平.基于层次多尺度散布熵的滚动轴承智能故障诊断[J].农业工程学报, 2021, 37(11):67-75. DOI: 10.11975/j.issn.1002-6819.2021.11.008. [15] 杨新敏,郭瑜,田田,等.基于集成包络谱的滚动轴承早期故障检测指标[J].振动与冲击, 2023, 42(10):67-73. DOI: 10.13465/j.cnki.jvs.2023.010.009. [16] ANTONI J. The infogram: Entropic evidence of the signature of repetitive transients[J]. Mech Syst Signal Process, 2016, 74: 73-94. DOI: 10.1016/j.ymssp.2015.04.034. [17] Case Western Reserve University Bearing Data Center [EB/OL].[2022-10-18] http://csegroups.case.edu/bearingdatacenter/home. [18] QIU H, LEE J, LIN J, et al. Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics[J]. J Sound Vib, 2006, 289(4/5):1066-1090. DOI: 10.1016/j.jsv.2005.03.007. ( |