[1] 康怡琳,孙璐冰,朱容波,等.深度学习中文命名实体识别研究综述[J].华中科技大学学报(自然科学版),2022,50(11):44-53. DOI:10.13245/j.hust.221104. [2] 肖瑞,胡冯菊,裴卫.基于BiLSTM-CRF的中医文本命名实体识别[J].世界科学技术-中医药现代化,2020,22(7):2504-2510. DOI:10.11842/wst.20190513001. [3] 李学良.基于知识图谱的中医药问答系统的研究与实现[D].青岛:青岛大学,2021. DOI:10.27262/d.cnki.gqdau.2021.001635. [4] FRIEDMAN C, ALDERSON P O, AUSTIN J H, et al. A general natural-language text processor for clinical radiology[J]. Journal of the American Medical Informatics Association, 1994, 1(2): 161-174. DOI:10.1136/jamia.1994.95236146. [5] ZHOU G D, SU J. Named entity recognition using an HMM-based chunk tagger[C] //Proceedings of the 40th Annual Meeting on Association for Fomputational Linguistics. ACM, 2002: 473-480. DOI:10.3115/1073083.1073163. [6] WU Y C, FAN T K, LEE Y S, et al. Extracting named entities using support vector machines[M] //BREMER E G, HAKENBERG J, HAN E H, et al, eds. Knowledge Discovery in Life Science Literature. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006: 91-103. DOI: 10.1007/11683568_8. [7] HAN L, WANG L, ZHANG W, et al. Rockhead profile simulation using an improved generation method of conditional random field[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2022, 14(3): 896-908. DOI:10.1016/j.jrmge.2021.09.007. [8] KOWSHER M, SAMI A A, PROTTASHA N J, et al. Bangla-BERT: transformer-based efficient model for transfer learning and language understanding[J]. IEEE Access, 2022, 10: 91855-91870. DOI:10.1109/ACCESS.2022.3197662. [9] QU Q Q, KAN H X, WU Y T, et al. Named entity recognition of TCM text based on bert model[C] //2020 7th International Forum on Electrical Engineering and Automation(IFEEA). Hefei, China. IEEE, 2020: 652-655. DOI: 10.1109/IFEEA51475.2020.00139. [10] QIN Q L, ZHAO S, LIU C M. A BERT-BiGRU-CRF model for entity recognition of Chinese electronic medical records[J]. Complexity, 2021, 2021: 6631837 DOI:10.1155/2021/6631837. [11] TONG B A, PAN J, ZHENG L X, et al. Research on Named Entity Recognition Based on Bert-BiGRU-CRF model in Spacecraft Field[C] //2021 IEEE International Conference on Computer Science, Electronic Information Engineering and Intelligent Control Technology(CEI). Fuzhou, China IEEE, 2021: 747-753. DOI: 10.1109/CEI52496.2021.9574470. [12] 谢靖,刘江峰,王东波.古代中国医学文献的命名实体识别研究: 以Flat-lattice增强的SikuBERT预训练模型为例[J].图书馆论坛, 2022, 42(10): 51-60. DOI: 10.3969/j.issn.1002-1167.2022.10.008. [13] 陈淑振,窦全胜,唐焕玲等.基于词融合与跨度检测的中文嵌套命名实体识别[J].计算机应用研究,2023,40(8):2382-2386+2392.DOI:10.19734/j.issn.1001-3695.2022.11.0767. [14] 李宝昌,郭卫斌.词典信息分层调整的中文命名实体识别方法[J].华东理工大学学报(自然科学版), 2023, 49(2): 276-283. DOI: 10.14135/j.cnki.1006-3080.20211105003. [15] 赵萍.基于特征增强的中文命名实体识别方法研究[D].烟台:山东工商学院,2022. DOI:10.27903/d.cnki.gsdsg.2022.000146. [16] 雷迪.面向中医药知识图谱的命名实体识别及关系抽取[D].石家庄: 河北地质大学, 2022. [17] LI J Y, FEI H, LIU J, et al. Unified named entity recognition as word-word relation classification[J]. Proc AAAI Conf Artif Intell, 2022, 36(10): 10965-10973. DOI: 10.1609/aaai.v36i10.21344. [18] LIU J, JI D H, LI J Y, et al. TOE: a grid-tagging discontinuous NER model enhanced by embedding tag/word relations and more fine-grained tags[J]. IEEE/ACM Trans Audio Speech Lang Process, 31: 177-187. DOI: 10.1109/TASLP.2022.3221009. [19] WARTO, MULJONO, PURWANTO, et al. Capitalization feature and learning rate for improving NER based on RNN BiLSTM-CRF[C] //2022 IEEE International Conference on Cybernetics and Computational Intelligence(CyberneticsCom). Malang, Indonesia. IEEE, 2022: 398-403. DOI: 10.1109/CyberneticsCom55287.2022.9865660. [20] PARK C, JEONG S, KIM J. ADMit: improving NER in automotive domain with domain adversarial training and multi-task learning[J]. Expert Syst Appl, 2023, 225: 120007. DOI: 10.1016/j.eswa.2023.120007. [21] DENG N, FU H, CHEN X. Named entity recognition of traditional Chinese medicine patents based on BiLSTM-CRF[J]. Wirel Commun Mob Comput, 2021, 2021: 6696205. DOI: 10.1155/2021/6696205. [22] ZHANG M Z, YANG Z G, LIU C, et al. Traditional Chinese Medicine Knowledge Service based on Semi-Supervised BERT-BiLSTM-CRF Model[C] //2020 International Conference on Service Science(ICSS). Xining, China. IEEE, 2020: 64-69. DOI: 10.1109/ICSS50103.2020.00018. ( |