[1] 马国,贾华东,卢长煜,等.磁粉检测与渗透检测在工程机械结构件无损检测中的应用[J].无损检测, 2019, 41(2): 62-64. DOI:10.11973/wsjc201902014. [2] CHENG L, TIAN G Y. Surface crack detection for carbon fiber reinforced plastic(CFRP)materials using pulsed eddy current thermography[J]. IEEE Sens J, 2011, 11(12): 3261-3268. DOI:10.1109/JSEN.2011.2157492. [3] TIAN G Y, WILSON J, CHENG L, et al. Pulsed eddy current thermography and applications[M] //New Developments in Sensing Technology for Structural Health Monitoring. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011: 205-231. DOI:10.1007/978-3-642-21099-0_10. [4] 潘孟春,何赟泽,陈棣湘.涡流热成像检测技术[M].北京:国防工业出版社, 2013: 1-3. [5] HE Y Z, LUO F L, PAN M C, et al. Defect classification based on rectangular pulsed eddy current sensor in different directions[J]. Sens Actuat A Phys, 2010, 157(1): 26-31. DOI:10.1016/j.sna.2009.11.012. [6] 王晓娜,杨沛,侯德鑫,等.脉冲涡流热成像的自适应异常提取算法[J].仪器仪表学报, 2016, 37(8): 1818-1824. DOI:10.19650/j.cnki.cjsi.2016.08.012. [7] D’ANGELO G, RAMPONE S. Shape-based defect classification for non destructive testing[C] //2015 IEEE Metrology for Aerospace(MetroAeroSpace), 2015, Benevento, Italy. IEEE, 2015: 406-410. DOI:10.1109/MetroAeroSpace.2015.7180691. [8] WEI B, HAO K R, TANG X S, et al. A new method using the convolutional neural network with compressive sensing for fabric defect classification based on small sample sizes[J]. Text Res J, 2019, 89(17): 3539-3555. DOI:10.1177/0040517518813656. [9] ABDEL-HAMID O, MOHAMED A R, JIANG H, et al. Applying Convolutional Neural Networks concepts to hybrid NN-HMM model for speech recognition[C] //2012 IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP), 2012, Kyoto, Japan. IEEE, 2012: 4277-4280. DOI:10.1109/ICASSP.2012.6288864. [10] EHRHART B, ECAULT R, TOUCHARD F, et al. Development of a laser shock adhesion test for the assessment of weak adhesive bonded CFRP structures[J]. Int J Adhes Adhes, 2014, 52: 57-65. DOI:10.1016/j.ijadhadh.2014.04.002. [11] AGRAWAL A, MITTAL N. Using CNN for facial expression recognition: A study of the effects of kernel size and number of filters on accuracy[J]. Vis Comput Int J Comput Graph, 2020, 36(2): 405-412. DOI:10.1007/s00371-019-01630-9. [12] ACHARYA S, PANT A K, GYAWALI P K. Deep learning based large scale handwritten Devanagari character recognition[C] //2015 9th International Conference on Software, Knowledge, Information Management and Applications(SKIMA), 2015, Kathmandu, Nepal. IEEE, 2015: 1-6. DOI:10.1109/SKIMA.2015.7400041. [13] ECKELS J D, JACOBSON E M, CUMMINGS I T, et al. Predicting local material thickness from steady-state ultrasonic wavefield measurements using a convolutional neural network[J]. Ultrasonics, 2022, 123: 106661. DOI:10.1016/j.ultras.2021.106661.. [14] RACHMADI R F, PURNAMA I E. Vehicle color recognition using convolutional neural network[EB/OL]. 2015: 1510.07391. https://arxiv.org/abs/1510.07391v3. [15] PATEL D, HONG X P, ZHAO G Y. Selective deep features for micro-expression recognition[C] //2016 23rd International Conference on Pattern Recognition(ICPR), 2016, Cancun, Mexico. IEEE, 2016: 2258-2263. DOI:10.1109/ICPR.2016.7899972. [16] QUEIROZ J C S, SANTOS Y T B, DA SILVA I C, et al. Damage detection in composite materials using tap test technique and neural networks[J]. J Nondestruct Eval, 2021, 40(1): 27. DOI:10.1007/s10921-021-00759-9. [17] 胡德洲,左宪章,王建斌,等.脉冲涡流热成像检测激励参数的优化[J].无损检测, 2014, 36(8): 23-28. [18] 刘俊岩,戴景民,王扬.红外图像序列处理的锁相热成像理论与试验[J].红外与激光工程, 2009, 38(2): 346-351. DOI:10.3969/j.issn.1007-2276.2009.02.034. [19] HE M, LI J Y, ZHANG Y W, et al. Research on crack visualization method for dynamic detection of eddy current thermography[J]. NDT & E Int, 2020, 116: 102361. DOI:10.1016/j.ndteint.2020.102361. ( |