[1] ZENG Y C, TANG L S, WU N Y, et al. Numerical simulation of electricity generation potential from fractured granite reservoir using the MINC method at the Yangbajing geothermal field[J]. Geothermics, 2018, 75: 122-136. DOI:10.1016/j.geothermics.2018.04.003. [2] 郭明星,匡永生,邵博群,等. 北山造山带东部微波山早志留世S型花岗岩成因及构造背景[J]. 内蒙古工业大学学报(自然科学版), 2024, 43(2): 137-145.DOI:10.13785/j.cnki.nmggydxxbzrkxb.2024.02.006. [3] NING P, JU F, SU H J, et al. An investigation on the deterioration of physical and mechanical properties of granite after cyclic thermal shock[J]. Geothermics, 2021, 97: 102252. DOI:10.1016/j.geothermics.2021.102252. [4] FJAESTAD D, TOMAC I. Experimental investigation of sand proppant particles flow and transport regimes through narrow slots[J]. Powder Technol, 2019, 343: 495-511. DOI:10.1016/j.powtec.2018.11.004. [5] BARTON N. A review of mechanical over-closure and thermal over-closure of rock joints: Potential consequences for coupled modelling of nuclear waste disposal and geothermal energy development[J]. Tunn Undergr Space Technol, 2020, 99: 103379. DOI:10.1016/j.tust.2020.103379. [6] TRIPATHI A, GUPTA N, SINGH A K, et al. Effects of elevated temperatures on the microstructural, physico-mechanical and elastic properties of barakar sandstone: a study from one of the world’s largest underground coalmine fire region, jharia, India[J]. Rock Mech Rock Eng, 2021, 54(3): 1293-1314. DOI:10.1007/s00603-020-02315-9. [7] MIAO S T, PAN P Z, YU P Y, et al. Fracture analysis of Beishan granite after high-temperature treatment using digital image correlation[J]. Eng Fract Mech, 2020, 225: 106847. DOI:10.1016/j.engfracmech.2019.106847. [8] 郤保平,成泽鹏,何水鑫,等.高温后花岗岩渗透性及其演变规律试验研究[J]. 岩石力学与工程学报, 2021, 40(增刊1): 2716-2723. DOI:10.13722/j.cnki.jrme.2020.1026. [9] RATHNAWEERA T D, RANJITH P G, GU X, et al. Experimental investigation of thermomechanical behaviour of clay-rich sandstone at extreme temperatures followed by cooling treatments[J]. Int J Rock Mech Min Sci, 2018, 107: 208-223. DOI:10.1016/j.ijrmms.2018.04.048. [10] 胡跃飞,胡耀青,赵国凯,等.温度和应力循环作用下花岗岩力学特性变化规律试验研究[J].岩石力学与工程学报, 2020, 39(4): 705-714. DOI:10.13722/j.cnki.jrme.2019.0760. [11] YIN W T, FENG Z J, ZHAO Y S. Effect of grain size on the mechanical behaviour of granite under high temperature and triaxial stresses[J]. Rock Mech Rock Eng, 2021, 54(2): 745-758. DOI:10.1007/s00603-020-02303-z. [12] 余莉,祝瀚政,李国伟,等.高温及冷却方式对花岗岩的影响规律分析[J]. 科学技术与工程, 2022, 22(14): 5784-5791. DOI:10.3969/j.issn.1671-1815.2022.14.037. [13] HAKI A, EL HADI M A, BOUHAFID A. Assessment of the pyrolysis, combustion and fractal dimension of fragmented oil shale particles[J]. Powder Technol, 2017, 318: 569-588. DOI:10.1016/j.powtec.2017.06.004. [14] ZHAO Z H, XU H R, WANG J, et al. Auxetic behavior of Beishan granite after thermal treatment: a microcracking perspective[J]. Eng Fract Mech, 2020, 231: 107017. DOI:10.1016/j.engfracmech.2020.107017. [15] LI Y B, ZHAI Y, WANG C S, et al. Mechanical properties of Beishan granite under complex dynamic loads after thermal treatment[J]. Eng Geol, 2020, 267: 105481. DOI:10.1016/j.enggeo.2020.105481. [16] WANG Z Y, FINK R, WANG Y, et al. Gas permeability calculation of tight rocks based on laboratory measurements with non-ideal gas slippage and poroelastic effects considered[J]. Int J Rock Mech Min Sci, 2018, 112: 16-24. DOI:10.1016/j.ijrmms.2018.10.002. [17] SANG Q, ZHAO X Y, LIU Y L, et al. Effects of the laminated-structure and mixed wettability on the oil/water relative permeabilities and oil productions in shale oil formations[J]. J Petrol Sci Eng, 2022, 208: 109457. DOI:10.1016/j.petrol.2021.109457. [18] GUNARATHNA G, DA SILVA B G. Influence of the effective vertical stresses on hydraulic fracture initiation pressures in shale and engineered geothermal systems explorations[J]. Rock Mech Rock Eng, 2019, 52(11): 4835-4853. DOI:10.1007/s00603-019-01841-5. [19] TIAN W L, YANG S Q, ELSWORTH D, et al. Permeability evolution and crack characteristics in granite under treatment at high temperature[J]. Int J Rock Mech Min Sci, 2020, 134: 104461. DOI:10.1016/j.ijrmms.2020.104461. [20] YIN W T, ZHAO Y S, FENG Z J. Experimental research on the permeability of fractured-subsequently-filled granite under high temperature-high pressure and the application to HDR geothermal mining[J]. Renew Energy, 2020, 153: 499-508. DOI:10.1016/j.renene.2020.02.009. [21] BROWNING J, MEREDITH P, GUDMUNDSSON A. Cooling-dominated cracking in thermally stressed volcanic rocks[J]. Geophys Res Lett, 2016, 43(16): 8417-8425. DOI:10.1002/2016GL070532. [22] WONG T F, BRACE W F. Thermal expansion of rocks: some measurements at high pressure[J]. Tectonophysics, 1979, 57(2/3/4): 95-117. DOI:10.1016/0040-1951(79)90143-4. ( |