-
Super resolution reconstruction of X-ray image based on light residual attention network
- YANG Kun, QI Chaoyi, LIU Tianjun, AI Shangpu, YAN Senguang, LIU Xiuling, XUE Linyan
-
2025, 45(4):
419-430.
DOI: 10.3969/j.issn.1000-1565.2025.04.010
-
Asbtract
(
86 )
PDF (1293KB)
(
16
)
-
References |
Related Articles |
Metrics
In response to the problem that most current medical image super-resolution reconstruction algorithms are complex and have a large number of parameters, a new lightweight deep residual medical image super-resolution network LDRAN was proposed. By designing a lightweight and efficient residual block LDRB, more convolutional layers are used to extract image information without increasing the number- DOI:10.3969/j.issn.1000-1565.2025.04.010针对X线图像超分辨率重建的轻量残差注意力网络杨昆1,2,3,齐晁仪4,刘天军4,艾尚璞1,闫森广1,刘秀玲4,5,薛林雁1,2,3(1.河北大学 质量技术监督学院,河北 保定 071002;2.计量仪器与系统国家地方联合工程研究中心,河北 保定 071002;3.河北省新能源汽车动力系统轻量化技术创新中心,河北 保定 071002;4.河北大学 电子信息工程学院,河北 保定 071002;5.河北省数字医疗工程重点实验室,河北 保定 071002)摘 要:针对当前医学图像超分辨率重建算法复杂、参数量大等问题,提出了轻量化的X线医学图像超分辨率网络LDRAN(lightweight deep residual attention network).该方法设计了轻量且高效的残差块 LDRB(lightweight deep residual block),在保证参数量不增加的条件下,通过增设卷积层来提取更为丰富的图像特征.为进一步提高卷积层间的信息传递效率,设计了一种新颖的残差级联方案IRSC(improved residual skip concatenation).同时,为应对医学影像中信噪比低的问题,构建了多维混合注意力机制模块CSPMA(channel-spatial-pixel mixed attention),该模块分别从通道、空间和像素3个维度筛选信息,从而显著增强了网络对关键图像特征的捕捉能力.实验结果表明,LDRAN在X线医学图像数据集Chest X-ray上的PSNR为36.81 dB,SSIM为0.896 6,均取得了最优.并且能够更好地重建X线图像的细节和纹理.此外,LDRAN在3个自然图像数据集上的重建效果比多数具有代表性的算法更好.关键词:超分辨重建;轻量化;深度残差块;混合多维度注意力模块;残差级联中图分类号:TP391 文献标志码:A 文章编号:1000-1565(2025)04-0419-12Super resolution reconstruction of X-ray image based on light residual attention networkYANG Kun1,2,3, QI Chaoyi4, LIU Tianjun4, AI Shangpu1, YAN Senguang1, LIU Xiuling4,5, XUE Linyan1,2,3(1. College of Quality and Technical Supervision, Hebei University, Baoding 071002, China;2. National & Local Joint Engineering Research Center of Metrology Instrument and System, Baoding 071002, China;3. Innovation Center for Lightweight of New Energy Vehicle Power System of Hebei, Baoding 071002, China;4. College of Electronic and Information Engineering, Hebei University, Baoding 071002, China;5. Key Laboratory of Digital Medical Engineering of Hebei Province, Baoding 071002, China)Abstract: In response to the problem that most current medical image super-resolution reconstruction algorithms are complex and have a large number of parameters, a new lightweight deep residual medical image super-resolution network LDRAN was proposed. By designing a lightweight and efficient residual block LDRB, more convolutional layers are used to extract image information without increasing the number- 收稿日期:2024-11-21;修回日期:2025-03-18 基金项目:河北省自然科学基金项目(F2022201037);河北大学科研创新团队项目(IT2023B07) 第一作者:杨昆(1976—),男,河北大学教授,博士生导师,主要从事生物医学图像处理方向研究.E-mail: yangkun@hbu.edu.cn 通信作者:薛林雁(1981—),女,河北大学教授,主要从事生物医学图像处理方向研究.E-mail:lyxue@hbu.edu.cn 第4期杨昆等:针对X线图像超分辨率重建的轻量残差注意力网络河北大学学报(自然科学版) 第45卷of parameters, and a new residual cascade method IRSC(improved residual skip concatenation)is designed to improve the information utilization among convolutional layers. In addition, to solve the problem of small percentage of useful information in medical images, the improved mixed multidimensional attention module CSPMA(channel-spatial-pixel mixed attention)is designed to filter information from three dimensions: channel, spatial and pixel, and is used to improve the networks attention to useful information in images. The experimental results show that LDRAN achieves the best PSNR(36.81 dB)and SSIM(0.8966)on the X-ray medical image dataset Chest X-ray and can better reconstruct the details and textures of X-ray images. Additionally, LDRAN outperforms most representative reconstruction algorithm on three natural image datasets.