[1] 丁文革, 李文博, 苑静, 于威, 傅广生, DING Wen-ge, LI Wen-bo, YUAN Jing, YU Wei, FU Guang-sheng. 多结叠层太阳电池中隧穿结的性能优化 [J]. 河北大学学报(自然科学版) 2011.doi:10.3969/j.issn.1000-1565.2011.04.005 [2] 刘如彬, 王帅, 张宝, 孙强, 孙彦铮, LIU Ru-bin, WANG Shuai, ZHANG Bao, SUN Qiang, SUN Yan-zheng. Ⅲ-Ⅴ化合物半导体太阳电池的最新研究进展 [J]. 电源技术 2009.doi:10.3969/j.issn.1002-087X.2009.07.027 [3] 李果华, 李国昌, 王爱坤, 严辉, Jertrude F.Neumark. 用于高效级联太阳电池的ZnSe材料研究 [J]. 太阳能学报 2003.doi:10.3321/j.issn:0254-0096.2003.05.018 [4] 朱锋, 赵颖, 魏长春, 任慧智, 薛俊明, 张晓丹, 高艳涛, 张德坤, 孙建, 耿新华, ZHU Feng, ZHAO Ying, WEI Chang-chun, REN Hui-zhi, XUE Jun-ming, ZHANG Xiao-dan, GAO Yan-tao, ZHANG De-kun, SUN Jian, GENG Xin-hua. 薄膜非晶/微晶叠层电池中NP隧穿结的影响 [J]. 人工晶体学报 2006.doi:10.3969/j.issn.1000-985X.2006.01.018 [5] 林鸿生, 林罡, 段开敏, Lin Hongsheng, Lin Gang, Duan Kaimin. a-Si/μc-Si叠层结构太阳能电池中的光诱导性能衰退 [J]. 固体电子学研究与进展 2000.doi:10.3969/j.issn.1000-3819.2000.03.013 [6] 李文欣, 胡林华, 戴松元. 染料敏化太阳电池研究进展 [J]. 中国材料进展 2009. [7] 彭英才, 傅广生. 新概念太阳电池 [M]. 北京:科学出版社 2014. [8] MEIER J, FL(U)CKIGER R, KEPPNER H. Complete microcrystalline p-i-n solar cell-crystalline or amorphous cell behavior [J]. Applied Physics Letters 1994, 65. [9] MEIER J, DUBAIL S, FLUCKIGER R. Intrinsic microcrystalline silicon (μc-Si:H)-a promising new thin film solar cell material [A]. Neuchatel, Switzerland 1994. [10] GREEN M A, EMERY K, HISHIKAWA Y. Solar cell efficiency tables (version 39) [J]. Progress in Photovoltaics:Research and Applications 2011, 20(01). [11] TANABE K. A review of ultrahigh efficiency Ⅲ-Ⅴ semiconductor compound solar cells:multijunction tandem, lower dimensional, photonic up/down conversion and plasmonicnanometallicstructures [J]. Energies 2009, 2(03). [12] HAQUE K E, GALIB M M H. An Investigation into Ⅲ-Ⅴ compounds to reach 20 [J]. Journal of Electronic Materials 2013, 42(10). [13] LEITE M S, WOO R L, MUNDAY J N. Towards an optimized all lattice-matched InAlAs/InGaAsP/InGaAs multijunction solar cell with efficiency》 50 [J]. Applied Physics Letters 2013, 102. [14] García, I., Rey-Stolle, I., Algora, C.. Performance analysis of AlGaAs/GaAs tunnel junctions for ultra-high concentration photovoltaics [J]. Journal of Physics, D. Applied Physics: A Europhysics Journal 2012, 4(4). [15] Enhanced efficiency in GaInP/GaAs tandem solar cells using carbon doped GaAs in tunnel junction [J]. Microelectronic engineering 2010, 4(4). [16] Ho Kwan Kang, Sang-Hyuk Park, Dong Hwan Jun, Chang Zoo Kim, Keun Man Song, Wonkyu Park, Chul Gi Ko, Hogyoung Kim. Te doping in the GaAs tunnel junction for GaInP/GaAs tandem solar cells [J]. Semiconductor Science and Technology 2011, 7(7). [17] GARCiA I, REY-STOLLE I, GALIANA B. A 32.6% efficient lattice-matched dual-junction solar cell working at 1000 suns [J]. Applied Physics Letters 2009, 94(05). [18] Matthew P. Lumb, Michael K. Yakes, Maria Gonzalez, Igor Vurgaftman, Christopher G. Bailey, Raymond Hoheisel, Robert J. Walters. Double quantum-well tunnel junctions with high peak tunnel currents and low absorption for InP multi-junction solar cells [J]. Applied physics letters 2012, 21(21). [19] GEISZ J F, KURTZ S R, WANLASS M W. Inverted GaInP/(In) GaAs/InGaAs triple-junction solar cells with low-stress metamorphic bottom junctions [A]. San Diego, California 2008. [20] GUTER W, SCHONE J, PHILIPPS S P. Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight [J]. Applied Physics Letters 2009, 94(22). [21] AMIN S A, SALIM S T, SALAM K M A. Cadmium selenide and cadmium telluride based high efficiency multi junction photovoltaics for solar energy harvesting [J]. International Journal of Energy 2013, 1(01). [22] Ping-Kuan Chang, Chun-Hsiung Lu, Chih-Hung Yeh, Mau-Phon Houng. High efficiency a-Si:H/a-Si:H solar cell with a tunnel recombination junction and a n-type μc-Si:H layer [J]. Thin Solid Films: An International Journal on the Science and Technology of Thin and Thick Films 2012, 9(9). [23] Seung Yeop Myong, Kobsak Sriprapha, Shinsuke Miyajima, Makoto Konagai, Akira Yamada. High efficiency protocrystalline silicon/microcrystalline silicon tandem cell with zinc oxide intermediate layer [J]. Applied physics letters 2007, 26(26). [24] 张鹤, 张晓丹, 赵颖. 多结硅基薄膜太阳电池的带隙匹配 [J]. 2013. [25] Meillaud, F.. Latest Developments of High-Efficiency Micromorph Tandem Silicon Solar Cells Implementing Innovative Substrate Materials and Improved Cell Design [J]. IEEE journal of photovoltaics 2012, 3(3). [26] Meillaud, F., Feltrin, A., Despeisse, M., Haug, F.-J., Domin, D., Python, M., Sderstrm, T., Cuony, P., Boccard, M., Nicolay, S., Ballif, C.. Realization of high efficiency micromorph tandem silicon solar cells on glass and plastic substrates: Issues and potential [J]. Solar Energy Materials and Solar Cells: An International Journal Devoted to Photovoltaic, Photothermal, and Photochemical Solar Energy Conversion 2011, 1(1). [27] XIN J, VAN DER WERF K H M, SCHROPP R E I. Thinner silicon-based tandem solar cell with high efficiency made by hot wire CVD [J]. Physica Status Solidi C 2011, 8(10). [28] Takuya Matsui, Haijun Jia, Michio Kondo. Thin film solar cells incorporating microcrystalline Si_(1-x)Ge)x as efficient infrared absorber: an application to double junction tandem solar cells [J]. Progress in photovoltaics 2010, 1(1). [29] MATSUI T, SAI H, SAITO K. Highefficiencythinfilm silicon solar cells with improved lightsoakingstability [J]. Progress in Photovoltaics:Research and Applications 2013, 21. [30] Kim, S., Chung, J.-W., Lee, H., Park, J., Heo, Y., Lee, H.-M.. Remarkable progress in thin-film silicon solar cells using high-efficiency triple-junction technology [J]. Solar Energy Materials and Solar Cells: An International Journal Devoted to Photovoltaic, Photothermal, and Photochemical Solar Energy Conversion 2013. [31] YUSOFF A, BIN MOHD R, KIM H P. All-solution-processed tandem solar cells [J]. Energy Technology 2013, 1(04). [32] Srinivas Sista, Ziruo Hong, Li-Min Chen, Yang Yang. Tandem polymer photovoltaic cells-current status, challenges and future outlook [J]. Energy & environmental science: EES 2011, 5(5). [33] KIM J Y, LEE K, COATES N E. Efficient tandem polymer solar cells fabricated by all-solution processing [J]. SCIENCE 2007, 317(13). [34] YOU J, DOU L, YOSHIMURA K. A polymer tandem solar cell with 10.6% power conversion efficiency [J]. Nature Communications 2013, 4. [35] Pattnaik, S., Xiao, T., Shinar, R., Shinar, J., Dalal, V. L.. Novel Hybrid Amorphous/Organic Tandem Junction Solar Cell [J]. IEEE journal of photovoltaics 2013, 1(1). [36] Wataru Kubo, Ayumi Sakamoto, Takayuki Kitamura, Yuji Wada, Shozo Yanagida. Dye-sensitized solar cells: improvement of spectral response by tandem structure [J]. Journal of Photochemistry and Photobiology, A. Chemistry 2004, 1/3(1/3). [37] Yamaguchi, Takeshi, Uchida, Yuki, Agatsuma, Shinya, Arakawa, Hironori. Series-connected tandem dye-sensitized solar cell for improving efficiency to more than 10 [J]. Solar Energy Materials and Solar Cells: An International Journal Devoted to Photovoltaic, Photothermal, and Photochemical Solar Energy Conversion 2009, 6/7(6/7). [38] Masatoshi Yanagida, Nobuko Onozawa-Komatsuzaki, Mitsuhiko Kurashige, Kazuhiro Sayama, Hideki Sugihara. Optimization of tandem-structured dye-sensitized solar cell [J]. Solar Energy Materials and Solar Cells: An International Journal Devoted to Photovoltaic, Photothermal, and Photochemical Solar Energy Conversion 2010, 2(2). [39] P. Liska, K. R. Thampi, M. Graetzel, D. Bremaud, D. Rudmann, H. M. Upadhyaya, A. N. Tiwari. Nanocrystalline dye-sensitized solar cell/copper indium gallium selenide thin-film tandem showing greater than 15 [J]. Applied physics letters 2006, 20(20). [40] S. Ito, I.M. Dharmadasa, GJ. Tolan, J.S. Roberts, G. Hill, H. Miura, J.-H. Yum, P. Pechy, P. Liska, P. Comte, M. Graetzel. High-voltage (1.8 V) tandem solar cell system using a GaAs/Al_XGa_((1-X))As graded solar cell and dye-sensitised solar cells with organic dyes having different absorption spectra [J]. Solar Energy 2011, 6(6). |