[1] DREIER B,FULLER R P,SEGAL D J,et al.Development of zinc finger domains for recognition of the 5'-CNN-3' family DNA sequences and their use in the construction of artificial transcription factors[J].Journal of Biological Chemistry,2005,280(42):35588-35597.DOI:10.1074/jbc.M506654200. [2] BIBIKOVA M,GOLIC M,GOLIC K G,et al.Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc finger nucleases[J].Genetics,2002,161(3):1169-1175. [3] TESSON L,USAL C,MENORET S,et al.Knockout rats generated by embryo microinjection of TALENs[J].Nature Biotechnology,2011,29(8):695-696.DOI:10.1038/nbt.1940. [4] 沈延,肖安,黄鹏,等.类转录激活因子效应物核酸酶(TALEN)介导的基因组定点修饰技术[J].遗传,2013,35(4):395-409.DOI:10.3724/SP.J.1005.2013.00395. SHEN Yan,XIAO An,HUANG Peng,et al.TALE nuclease engineering and targeted genome modification[J].Hereditas,2013,35(4):395-409.DOI:10.3724/SP.J.1005.2013.00395. [5] 沈延,黄鹏,张博.TALEN构建与斑马鱼基因组定点突变的实验方法与流程[J].遗传,2013,35(4):533-544.DOI:10.3724/SP.J.1005.2013.00533. SHEN Yan,HUANG Peng,ZHANG Bo.Aprotocol for TALEN construction and gene targeting in zebrafish[J].Hereditas,2013,35(4):533-544.DOI:10.3724/SP.J.1005.2013.00533. [6] 杨翠翠,佟慧丽,马兴红,等.利用TALEN技术在牛胎儿成纤维细胞中敲除Myostatin基因[J].遗传,2014,36(7):685-690.DOI:10.3724/SP.J.1005.2014.0685. YANG Cuicui,TONG Huili,MA Xinghong,et al.Myostatin knockout in bovine fetal fibroblasts by using TALEN[J].Hereditas,2014,36(7):685-690.DOI:10.3724/SP.J.1005.2014.0685. [7] 殷利眷,胡斯奇,郭斐.CRISPR-Cas9基因编辑技术在病毒感染疾病治疗中的应用[J].遗传,2015,37(5):412-418.DOI:10.16288/j.yczz.14-460. YIN Lijuan,HU Siqi,GUO Fei.The application of CRISPR-Cas9 gene editing technology in viral infection diseases[J].Hereditas,2015,37(5):412-418.DOI:10.16288/j.yczz.14-460. [8] 李君,张毅,陈坤玲,等.CRISPR-Cas系统:RNA靶向的基因组定向编辑新技术[J].遗传,2013,35(11):1265-1273.DOI:10.3724/SP.J.1005.2013.01265. LI Jun,ZHANG Yi,CHEN Kunling,et al.CRISPR/Cas:a novel way of RNA-guided genome editing[J].Hereditas,2013,35(11):1265-1273.DOI:10.3724/SP.J.1005.2013.01265. [9] 王延鹏,程曦,高彩霞,等.利用基因组编辑技术创制抗白粉病小麦[J].遗传,2014,36(8):848. [10] CHEN H F,CHOI J,BAILEY S.Cut site selection by the two nuclease domains of the Cas9 RNA-guided endonuclease[J].Journal of Biological Chemistry,2014,289(19):13284-13294.DOI:10.1074/jbc.M113.539726. [11] SASAKI H,YOSHIDA K,HOZUMI A,et al.CRISPR/Cas9-mediated gene knockout in the ascidian Ciona intestinalis[J].Development Growth Differentiation,2014,56(7):499-510.DOI:10.1111/dgd.12149. [12] BAKER M.Gene editing at CRISPR speed[J].Nature Biotechnology,2014,32(4):309-312.DOI:10.1038/nbt.2863. [13] LI M H,YANG H H,ZHAO J,et al.Efficient and heritable gene targeting in tilapia by CRISPR/Cas9[J].Genetics,2014,197(2):591-599.DOI:10.1534/genetics.114.163667. [14] NORAIS C,MOISAN A,GASPIN C,et al.Diversity of CRISPR systems in the euryarchaeal pyrococcales[J].RNA Biology,2013,10(5):659-670.DOI:10.4161/rna.23927. [15] BISWAS A,GAGNON J N,BROUNS S J,et al.CRISPR target:bioinformatic prediction and analysis of crRNA targets[J].RNA Biology,2013,10(5):817-827.DOI:10.4161/rna.24046. [16] SHEN B,ZHANG W S,ZHANG J,et al.Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects[J].Nature Methods,2014,11(4):399-402.DOI:10.1038/nmeth.2857. [17] STERNBERG S H,REDDING S,JINEK M,et al.DNA interrogation by the CRISPR RNA-guided endonuclease Cas9[J].Nature,2014,507(7490):62-67.DOI:10.1038/nature13011. [18] SAKUMA T,NISHIKAWA A,KUME S,et al.Multiplex genome engineering in human cells using all-in-one CRISPR/Cas9 vector system[J].Scientific Reports,2014,4:5400.DOI:10.1038/srep05400. [19] JINEK M,JIANG F G,TAYLOR D W,et al.Structures of Cas9 endonucleases reveal RNA-mediated conformational activation[J].Science,2014,343(6176):1215-1227.DOI:10.1126/science.1247997. [20] AUER T O,BENE D F.CRISPR/Cas9 and TALEN-mediated knock-in approaches in zebrafish[J].Methods,2014,69(2):142-150.DOI:10.1016/j.ymeth.2014.03.027. [21] ISHINO Y,SHINAGAWA H,MAKINO K,et al.Nucleotide sequence of the iap gene,responsible for alkaline phosphatase isozyme conversion in Escherichia coli,and identification of the gene product[J].Journal of Bacteriology,1987,169(12):5429-5433. [22] BULT C J.Complete genome sequence of the methanogenic archaeon,Methanococcus jannaschii[J].Science,1996,273(5278):1058-1073.DOI:10.1126/science.273.5278.1058. [23] JANSEN R,EMBDEN J D,GAASTRA W,et al.Identification of genes that are associated with DNA repeats in prokaryotes[J].Molecular Microbiology,2002,43(6):1565-1575.DOI:10.1007/BF02490464. [24] MOJICA F J,DIEZ-VILLASENOR C,GARCIA-MARTINEZ J,et al.Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements[J].Journal of Molecular Evolution,2005,60(2):174-182.DOI:10.1007/s00239-004-0046-3. [25] POURCEL C,SALVIGNOL G,VERGNAUD G.CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA,and provide additional tools for evolutionary studies[J].Microbiology,2005,151(Pt 3):653-663.DOI:10.1099/mic.0.27437-0. [26] BOLOTIN A,QUINQUIS B,SOROKIN A,et al.Clustered regularly interspaced short palindrome repeats(CRISPRs)have spacers of extrachromosomal origin[J].Microbiology,2005,151(Pt 8):2551-2561.DOI:10.1099/mic.0.28048-0. [27] MAKAROVA K S,GRISHIN N V,SHABALINA S A,et al.A putative RNA-interference-based immune system in prokaryotes:computational analysis of the predicted enzymatic machinery,functional analogies with eukaryotic RNAi,and hypothetical mechanisms of action[J].Biology Direct,2006,1(1):1-26.DOI:10.1186/1745-6150-1-7. [28] BARRANGOU R,FREMAUX C,DEVEAU H,et al.CRISPR provides acquired resistance against viruses in prokaryotes[J].Science,2007,315(5819):1709-1712.DOI:10.1126/science.1138140. [29] 李辉,施振旦.Cas9 新型基因打靶系统的研究进展[J].江苏农业学报,2013,29(4):907-911.DOI:10.3969/j.issn.1000-4440.2013.04.037. LI Hui,SHI Zhendan.Reaserch progress of gene targeting technology of CRISPR/Cas9 system[J].Jiangsu Journal of Agricultural Science,2013,29(4):907-911.DOI:10.3969/j.issn.1000-4440.2013.04.037. [30] JARMAN A P,GRAU Y,JAN L Y,et al.Atonal is a proneural gene that directs chordotonal organ formation in the Drosophila peripheral nervous system[J].Cell,1993,73(7):1307-1321.DOI:10.1016/0092-8674(93)90358-W. [31] WEI Y Z,CHESNE M T,TERNS R M,et al.Sequences spanning the leader-repeat junction mediate CRISPR adaptation to phage in Streptococcus thermophilus[J].Nucleic Acids Research,2015,43(3):1749-1758.DOI:10.1093/nar/gku1407. [32] BARRANGOU R,MARRAFFINI L A.CRISPR-Cas systems:prokaryotes upgrade to adaptive immunity[J].Molecular Cell,2014,54(2):234-244.DOI:10.1016/j.molcel.2014.03.011. [33] CHARPENTIER E,MARRAFFINI L A.Harnessing CRISPR-Cas9 immunity for genetic engineering[J].Current Opinion in Microbiology,2014,19:114-119.DOI:10.1016/j.mib.2014.07.001. [34] MAKAROVA K S,HAFT D H,BARRANGOU R,et al.Evolution and classification of the CRISPR-Cas systems[J].Nature Reviews Microbiology,2011,9(6):467-477.DOI:10.1038/nrmicro2577. [35] ZHOU H B,LIU B,WEEKS D P,et al.Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice[J].Nucleic Acids Research,2014,42(17):10903-10914.DOI:10.1093/nar/gku806. [36] KANCHISWAMY C N,SARGENT D J,VELASCO R,et al.Looking forward to genetically edited fruit crops[J].Trends in Biotechnology,2014,33(2):62-64.DOI:http://dx.doi.org/10.1016/j.tibtech.2014.07.003. [37] BASSETT A R,LIU J L.CRISPR/Cas9 and genome editing in Drosophila[J].Journal of Genetics and Genomics,2014,41(1):7-19.DOI:10.1016/j.jgg.2013.12.004. [38] ANDERS C,NIEWOEHNER O,DUERST A,et al.Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease[J].Nature,2014,513(7519):569-573.DOI:10.1038/nature13579. [39] OH J-H,VAN PIJKEREN J-P.CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri[J].Nucleic Acids Research,2014,42(17):1-11.DOI:10.1093/nar/gku623. [40] 刘莹,郑鹏生,张忠明.CRISPR系统结构及功能的研究[J].医学分子生物学杂志,2014,11(4):297-302.DOI:10.3870/j.issn.1672-8009.2014.04.012. LIU Ying,ZHENG Pengsheng,ZHANG Zhongming.Structure and function of CRISPR system[J].Journal of Medical Molecular Biology,2014,11(4):297-302.DOI:10.3870/j.issn.1672-8009.2014.04.012. [41] DELTCHEVA E,CHYLINSKI K,SHARMA C M,et al.CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III[J].Nature,2011,471(7340):602-607.DOI:10.1038/nature09886. [42] MALI P,ESVELT K M,CHURCH G M.Cas9 as a versatile tool for engineering biology[J].Nature Methods,2013,10(10):957-963.DOI:10.1038/NMETH.2649. [43] 颜雯,李海涛,向华,等.CRISPR-Cas基因组改造技术研究进展[J].广东农业科学,2014,2:149-152. YAN Wen,LI Haitao,XIANG Hua,et al.Research progress on the genome modification technologies of CRISPR-Cas[J].Guangdong Agricultural Sciences,2014,2:149-152. [44] JINEK M,CHYLINSKI K,FONFARA I,et al.A programmable dual-RNA-guided DNA ndonuclease in adaptive bacterial immunity[J].Science,2012,337(6096):816-821.DOI:10.1126/Science.1225829. [45] ZHAO P,ZHANG Z,KE H M,et al.Oligonucleotide-based targeted gene editing in C.elegans via the CRISPR/Cas9 system[J].Cell Research,2014,24(2):247-250.DOI:10.1038/cr.2014.9. [46] PORT F,CHEN H M,LEE T,et al.Optimized CRISPR/Cas tools for efficient germline and somatic genome engineering in Drosophila[J].Proceedings of the National Academy of Sciences,2014,111(29):E2967-E2976.DOI:10.1073/pnas.1405500111. [47] DAIMON T,KIUCHI T,TAKASU Y.Recent progress in genome engineering techniques in the silkworm,Bombyx mori[J].Development,Growth & Differentiation,2014,56(1):14-25.DOI:10.1111/dgd.12096. [48] WANG J B,QUAKE S R.RNA-guided endonuclease provides a therapeutic strategy to cure latent herpesviridae infection[J].Proceedings of the National Academy of Sciences,2014,111(36):13157-13162.DOI/10.1073/pnas.1410785111. [49] XIE F,YE L,CHANG J C,et al.Seamless gene correction of β-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac[J].Genome Research,2014,24(9):1526-1533.DOI:10.1101/gr.173427.114. [50] HRUSCHA A,KRAWITZ P,RECHENBERG A,et al.Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish[J].Development,2013,140(24):4982-4987.DOI:10.1242/dev.099085. [51] AIDA T,IMAHASHI R,TANAKA K.Translating human genetics into mouse:the impact of ultra-rapid in vivo genome editing[J].Development Growth Differentiation,2014,56(1):34-45.DOI:10.1111/dgd.12101. [52] KABADI A M,OUSTEROUT D G,HILTON I B,et al.Multiplex CRISPR/Cas9-based genome engineering from a single lentiviral vector[J].Nucleic Acids Research,2014,42(19):e147.DOI:10.1093/nar/gku749. [53] CONG L,RAN F A,COX D,et al.Multiplex genome engineering using CRISPR/Cas systems[J].Science,2013,339(6121):819-823.DOI:10.1126/science.1231143. [54] MALI P,YANG L H,ESVELT K M,et al.RNA-guided human genome engineering via Cas9[J].Science,2013,339(6121):823-826.DOI:10.1126/science.1232033. [55] SUGANO S S,SHIRAKAWA M,TAKAGI J,et al.CRISPR/Cas9-mediated targeted mutagenesis in the liverwort Marchantia polymorpha L.[J].Plant and Cell Physiology,2014,55(3):475-481.DOI:10.1093/pcp/pcu014. [56] FENG Z Y,ZHANG B T,DING W N,et al.Efficient genome editing in plants using a CRISPR/Cas system[J].Cell Research,2013,23(10):1229-1232.DOI:10.1038/cr.2013.114. [57] ZHANG H,ZHANG J S,WEI P L,et al.The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation[J].Plant Biotechnology Journal,2014,12(6):797-807.DOI:10.1111/pbi.12200. [58] LI D L,QIU Z W,SHAO Y J,et al.Heritable gene targeting in the mouse and rat using a CRISPR-Cas system[J].Nature Biotechnology,2013,31(8):681-683.DOI:10.1038/nbt.2661. [59] YOSHIMI K,KANEKO T,VOIGT B,et al.Allele-specific genome editing and correction of disease-associated phenotypes in rats using the CRISPR-Cas platform[J].Nature Communications,2014,5:4240.DOI:10.1038/ncomms5240. [60] RAMAKRISHNA S,KWAKU DAD A-B,BELOOR J,et al.Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA[J].Genome Research,2014,24(6):1020-1027.DOI:10.1101/gr.171264.113. [61] ZHANG C,XIAO B,JIANG Y Y,et al.Efficient editing of malaria parasite genome using the CRISPR/Cas9 system[J].mBio,2014,5(4):e01414-01414.DOI:10.1128/mBio.01414-14. [62] ZHANG F,WEN Y,GUO X.CRISPR/Cas9 for genome editing:progress,implications and challenges[J].Human Molecular Genetics,2014,23(R1):R40-R46.DOI:10.1093/hmg/ddu125. [63] TERNS R M,TERNS M P.CRISPR-based technologies:prokaryotic defense weapons repurposed[J].Trends in Genetics,2014,30(3):111-118.DOI:10.1016/j.tig.2014.01.003. [64] LARSON M H,GILBERT L A,WANG X W,et al.CRISPR interference(CRISPRi)for sequence-specific control of gene expression[J].Nature Protocols,2013,8(11):2180-2196.DOI:10.1038/nprot.2013.132. [65] GILBERT L A,LARSON M H,MORSUT L,et al.CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes[J].Cell,2013,154(2):442-451.DOI:http://dx.doi.org/10.1016/j.cell.2013.06.044. [66] FENG Y,SASSI S,SHEN J K,et al.Targeting CDK11 in osteosarcoma cells using the CRISPR-Cas9 system[J].Journal of Orthopaedic Research,2015,33(2):199-207.DOI:10.1002/jor.22745. [67] 罗斌.CRISPR/Cas9技术介导的稳定沉默LDHA表达对肺癌A549细胞增殖的影响[J].生物技术世界,2015(1):97-98. [68] HSU P D,SCOTT D A,WEINSTEIN J A,et al.DNA targeting specificity of RNA-guided Cas9 nucleases[J].Nature Biotechnology,2013,31(9):827-832.DOI:10.1038/nbt.2647. [69] XIAO A,CHENG Z C,KONG L,et al.CasOT:a genome-wide Cas9/gRNA off-target searching tool[J].Bioinformatics,2014,30(8):1180-1182.DOI:10.1093/bioinformatics/btt764. [70] GAO Y B,ZHAO Y D.Self-processing of ribozyme-flanked RNAs into guide RNAs in vitro and in vivo for CRISPR-mediated genome editing[J].Journal of Integrative Plant Biology,2014,56(4):343-349.DOI:10.1111/jipb.12152. [71] HEIGWER F,KERR G,BOUTROS M.E-CRISP:fast CRISPR target site identification[J].Nature Methods,2014,11(2):122-123.DOI:10.1038/nmeth.2812. [72] WAGNER J C,PLATT R J,GOLDFLESS S J,et al.Efficient CRISPR-Cas9-mediated genome editing in Plasmodium falciparum[J].Nature Methods,2014,11(9):915-918.DOI:10.1038/NMETH.3063. [73] JIANG W Y,BIKARD D,COX D,et al.RNA-guided editing of bacterial genomes using CRISPR-Cas systems[J].Nature Biotechnology,2013,31(3):233-239.DOI:10.1038/nbt.2508. [74] DE SOUZA N.Genetics:more specific CRISPR editing[J].Nature Methods,2014,11(7):712-712.DOI:10.1038/nbt.2916. [75] GUELL M,YANG L H,CHURCH G.Genome editing assessment using CRISPR genome analyzer(CRISPR-GA)[J].Bioinformatics,2014,30(2):2968-2970.DOI:10.1093/bioinformatics/btu427. |