[1] BARNSLEY M F.Fractal everywhere[M].New York:Academic Press,1988. [2] BARNSLEY M F,ELTON J H,HARDIN D P.Recurrent iterated function systems[J].Constr Approx,1989,5:3-31. [3] 沙震,阮火军.Bamsley-Elton Hantin的一个定理的修正[J].高校应用数学学报A辑,2000,15(2):157-162. SHA Z,RUAN H J.A revision of the theorem of the Bamsley-Elton Hantin[J].Appl Math J Chinese Univ Ser A,2000,15(2):157-162. [4] TRICOT C.Curves and fractal dimension[M].New York:Spinger,1995. [5] DUBUC B,TRICOT C.Variation dune Function et Dimension de son graph[J].C R Math Acad Sci ParisSer I,1998,306:531-533. [6] TRICOT C.Funtion norms and fractal dimension[J].Siam J Math Anal,1997,28(1):189-212. [7] DUBUC B,ZUKER S W,TRICOT C,et al.Evaluating the fractal dimension of surfaces[J].Proc R Soc Lond Ser A,1989,425:113-127. [8] 文志英.分形几何的数学基础[M].上海:科学出版社,2000. WEN Z Y.The mathematical basis of fractal geometry[M].Shanghai:Science Press,2000. [9] 冯志刚,王磊.分形差值函数的变差的性质[J].江苏大学学报(自然科学版),2005,26(1):49-52. FENG Z G,WANG L.Properties of variation of fractal interpolation function[J].Journal of Jiangsu University(Natural Science),2005,26(1):49-52. [10] FENG Z G.Variation and Minkowski dimension of fractal interpolation surface[J].Math Anal Appl,2008,345(1):3222-344. [11] 徐惠,冯志刚.一类分形插值函数的变差和计盒维数[J].安徽工业大学学报(自然科学版),2008,25(4):444-447. XU H,FENG Z G.A class of variation and box-counting dimension of fractal interpolation function[J].Journal of Anhui University of Technology(Natural Science),2008,25(4):444-447. [12] 王伟,冯志刚.递归分形插值函数的计盒维数[J].安徽工业大学学报(自然科学版),2009,26(2):187-189. WANG W,FENG Z G.Box-counting dimension of recurrent fractal interpolation function[J].Journal of Anhui University of Technology(Natural Science),2009,26(2):187-189. [13] BOUBOULIS P,DALLA L.A general construction of recurrent bivariate fractal interpolation surfaces and computation of their box-counting dimension[J].Japprox Theory,2006,141:99-117. |