河北大学学报(自然科学版) ›› 2017, Vol. 37 ›› Issue (2): 216-224.DOI: 10.3969/j.issn.1000-1565.2017.02.017

• • 上一篇    

主动学习算法研究进展

杨文柱1,田潇潇1,王思乐1,张锡忠2   

  • 收稿日期:2016-10-11 出版日期:2017-03-25 发布日期:2017-03-25
  • 通讯作者: 张锡忠(1966—),男,河北衡水人,保定市教育考试院高级工程师,主要从事云计算与大数据研究.E-mail:zxz@bhu.edu.cn
  • 作者简介:杨文柱(1968—),男,河北保定人,河北大学教授,博士,主要从事机器视觉与智能系统研究. E-mail:wenzhuyang@163.com
  • 基金资助:
    河北省自然科学基金资助项目(F2015201033);国家科技支撑计划项目(2013BAK07B04);河北大学研究生创新项目(X2016057)

Recent advances in active learning algorithms

YANG Wenzhu1,TIAN Xiaoxiao1,WANG Sile1,ZHANG Xizhong2   

  1. 1.School of Computer Science and Technology, Hebei University, Baoding 071002, China; 2.Institute of Information Technology, Baoding Education Examinations Authority, Baoding 071000, China
  • Received:2016-10-11 Online:2017-03-25 Published:2017-03-25

摘要: 主动学习的主要目的是在保证分类器精度不降低的前提下尽量降低人工标注的成本.主动学习算法通过迭代方式在原始样例集中挑选可以提升模型性能的样例进行专家标注,并将其补充到已有的训练集中,使被训练的分类器在较低的标注成本下获得较强的泛化能力.首先对主动学习算法中3个关键步骤的研究进展情况进行了分析:1)初始训练样例集的构建方法及其改进;2)样例选择策略及其改进;3)算法终止条件的设定及其改进;然后对传统主动学习算法面临的问题及改进措施进行了深入剖析;最后展望了主动学习需进一步研究的内容.

关键词: 主动学习, 初始训练集, 样例选择策略, 终止条件

Abstract: Active learning mainly aims at reducing the cost of manual annotation without decreasing the accuracy of the classifier.Active learning algorithm gets high quality training sample set by selecting the informative unlabeled samples which are labeled by domain experts later.The selected sample set is used to train the classifier.This improves the generalization ability of trained classifier while minimizes the cost of the labeling.Firstly,the recent advances in the three key steps in active learning algorithm was summarized,including:1)the method for constructing the initial training sample set and its improvement;2)the sample selection strategy and its improvement;3)the termination condition and its improvement.Then,the problems in active learning were analyzed and the corresponding countermeasures were presented.Finally,the future works in active learning were addressed.

Key words: active learning, initial training sample set, sample selection strategy, termination condition

中图分类号: