河北大学学报(自然科学版) ›› 2017, Vol. 37 ›› Issue (6): 662-666.DOI: 10.3969/j.issn.1000-1565.2017.06.014

• • 上一篇    下一篇

基于极速学习机和最近邻的回归推荐算法

陈爱霞1,李宁2   

  • 收稿日期:2016-11-08 发布日期:2017-11-25
  • 作者简介:陈爱霞(1982—),女,河北宁晋人,河北大学讲师,主要从事不确定信息处理方面研究. E-mail:aixia_chen@163.com
  • 基金资助:
    国家自然科学基金资助项目(61672205)

Regression recommendation algorithm based on extreme learning machine and nearest neighbors

CHEN Aixia1,LI Ning2   

  1. 1.College of Mathematics and Information Science, Hebei University, Baoding 071002, China; 2.Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100093, China
  • Received:2016-11-08 Published:2017-11-25

摘要: 提出了一种基于极速学习机和最近邻的协同过滤回归推荐算法.该算法首先采用k最近邻法对评分矩阵的缺失值进行填充,然后将极速学习机作为回归器为用户产生推荐.在推荐领域中的标杆数据集上,将该算法与常用推荐算法- LRCF算法进行了比较,验证了该算法的有效性.

关键词: k最近邻, 极速学习机, 推荐系统

Abstract: This paper proposed a collaborative filtering regression recommendation algorithm based on extreme learning machine(ELM)and nearest neighbors.The algorithm firstly used the k nearest neighbors method to fill the missing attribute value,then the ELM regression machine is used to produce recommendations for the user.On the benchmarking data sets in the field of recommendation,we compared our algorithm with the common recommend algorithm—LRCF algorithm,and verified the effectiveness of the proposed algorithm.

Key words: k nearest neighbors, extreme learning machine, recommender systems

中图分类号: