[1] ZHOU H-C, LONG J R, YAGHI O M. Introduction to metal-organic frameworks[J]. Chem Rev, 2012, 112(2):673-674.DOI:10.1021/cr300014x. [2] LEE J Y, FARHA O K, ROBERTS J, et al. Metal-organic framework materials as catalysts[J]. Chem Soc Rev, 2009, 38(5): 1450-1459. DOI:10.1039/B807080F. [3] ZHU C, YUAN J G, CHEN X, et al. Chiral nanoporous metal-metallosalen frameworks for hydrolytic kinetic resolution of epoxides[J] J Am Chem Soc, 2012, 134: 8058-8061.DOI:10.1021/ja302340b. [4] YANG Z, ZHU C, LI Z, et al. Engineering chiral Fe(Salen)-based metal-organic frameworks for asymmetric sulfide oxidation[J]. Chem Commun, 2014, 50: 8775-8778.DOI:10.1039/C4CC03308F. [5] XI W, LIU Y, XIA Q, et al. Direct and post-synthesis incorporation of chiral metallosalen catalysts into metal–organic frameworks for asymmetric organic transformations[J]. Chem Eur J, 2015, 21(36): 12581-12585.DOI:10.1002/chem.201501486. [6] YU S, PU L. Recent progress on using BINOLs in enantioselective molecular recognition[J]. Tetrahedron, 2015, 71: 745-772.DOI:10.1016/j.tet.2014.11.007. [7] DEY C, KUNDU T, BISWAL B P, et al. Crystalline metal-organic frameworks(MOFs): synthesis, structure and function[J]. Acta Cryst, 2014, B70: 3-10.DOI:10.1107/S2052520613029557. [8] EVANS O R, LIN W. Crystal engineering of NLO materials based on metal-organic coordination networks[J]. Acc Chem Res, 2002, 35: 511-522.DOI:10.1021/ar0001012. [9] MA L Q, CARTER A, LIN W B. Enantioselective catalysis with homochiral metal-organic frameworks[J]. Chem Soc Rev, 2009, 38: 1248-1256.DOI:10.1039/B807083K. [10] HE C S, MA B Q, NGUYEN S T, et al. A metal-organic framework material that functions as an enantioselective catalyst for olefin epoxidation[J]. Chem Commun, 2006: 2563-2565.DOI:10.1039/B600408C. [11] OH M, MIRKIN C A. Chemically tailorable colloidal particles from in?nite coordination polymers[J]. Nature, 2005, 438: 651-654.DOI:10.1038/nature04191. [12] QU B, HADDAD N, RODRIGUEZ S, et al. Ligand-accelerated stereoretentive Suzuki-Miyaura coupling of unprotected 3,3'-dibromo-BINOL[J]. J Org Chem, 2016, 81(3): 745-750.DOI:10.1021/acs.joc.5b02368. [13] WU X, XIE M, ZHAO X, et al. Enantioselective fluorescent sensor for amino acid derivatives based on BINOL bearing hexahydropyrrolo[1,2-c] imidazol-1-one units[J]. Tetrahedron Letters, 2014, 55: 3446-3449.DOI:10.1016/j.tetlet.2014.04.075. [14] LOVIE-TOON J P, TRAM C M, FLYNN B L, et al. Mechanisms of carbonyl activation by BINOL N-triflylphosphoramides: enantioselective nazarov cyclizations[J]. ACS Catal, 2017, 7: 3466-3476.DOI:10.1021/acacatal.7b.292. [15] HU G, GUPTA A K, HUANG L, et al. Pyro-borates, spiro-borates, and boroxinates of BINOL-assembly structures, and reactivity[J]. J Am Chem Soc, 2017, 139: 10267-10285.DOI:10.1021/jacs.7b02317. [16] OGUNLAJA A S, HOSTEN E, BETZ R, et al. Selective removal of isoquinoline and quinoline from simulated fuel using 1,10-binaphthyl-2,20-diol(BINOL): crystal structure and evaluation of the adduct electronic properties[J]. RSC Adv, 2016, 6: 39024-39038.DOI:10.1039/c6ra03854a. [17] SHOCKRAVI A, JAVADI A, ABOUZARI-LOTF E. Binaphthyl-based macromolecules: a review[J]. RSC Adv, 2013, 3: 6717-6746. DOI:10.1039/c3ra22418j. |