[1] LIE S. Theorie der transformationsgruppen I [J]. Math Ann, 1880, 16(4):441-528. DOI: 10.1007/BF01446218. [2] LUTZKY M. Symmetry groups and conserved quantities for the harmonic oscillator[J]. J Phys A-Math Gen, 1978, 11(2): 249-258. DOI: 10.1088/0305-4470/11/2/005. [3] LUTZKY M. Dynamical symmetries and conserved quantities[J]. J Phys A-Math Gen, 1979, 12(7): 973-981. DOI:10.1088/0305-4470/12/7/012. [4] OLVER P J. Applications of Lie groups to differential equations[M]. New York: Springer-Verlag, 2000. [5] 张毅, 薛纭. 仅含第二类约束的约束 Hamilton 系统的 Lie 对称性[J]. 物理学报, 2001, 50(5): 816-819. [6] 李元成, 夏丽莉, 王小明, 等. 完整系统 Appell 方程的 Lie-Mei 对称性与守恒量[J]. 物理学报, 2010, 59(6): 3639-3642. [7] MEI F X. Lie symmetries and conserved quantities of constrained mechanical systems[J]. Acta Mech, 2000, 141(3-4): 135-148. DOI:10.1007/BF01268673. [8] 刘长欣, 裴利军, 夏丽莉. Kepler问题的离散化和积分理论[J]. 郑州大学学报(理学版),2016, 48(2): 29-33. [9] XIA L L, CHEN L Q, LIU C X. Noether theorems and discrete variational integrators in field theory[J]. Acta Physica Polonoca A, 2015,127(3): 669-673. DOI:10.12693/APhysPolA.127.669. [10] XIA L L, CHEN L Q, FU J L, et al. Symmetries and variational calculation of discrete Hamiltonian systems[J]. Chinese Physics B, 2014,23(7): 070201. [11] DORODNITSYN V, WINTERNITZ P. Lie point symmetry preserving discretizations for variable coefficient Korteweg-de Vries equations[J]. Nonlinear Dyn, 2000,22(1): 49-59. [12] LEVI D, TREMBLAY S, WINTEMITZ P. Lie point symmetries of difference equations and lattices[J]. J Phys A-Math Gen, 2000,33(47): 8507-8524. DOI:10.1088/0305-4470/33/47/313. [13] SHI S Y, FU J L, CHEN L Q. The Lie symmetries and Noether conserved quantities of discrete non-conservative mechanical systems[J]. Chin Phys B, 2008,17(2): 385-389. [14] FU J L, SALVADOR J, TANG Y F. Discrete variational principle and first integrals for Lagrange-Maxwell mechanico-electrical systems[J]. Chin Phys, 2007,16(3): 570-577. [15] 施沈阳, 黄晓虹, 张晓波, 等. 离散差分变分 Hamilton 系统的 Lie 对称性与Noether 守恒量[J]. 物理学报, 2009, 58(6): 3625-3631. [16] WANG X Z, FU H, FU J L. Lie symmetries and conserved quantities of discrete nonholonomic Hamiltonian systems[J]. Chin Phys B, 2012,21(4): 040201. DOI:10.1088/1674-1056/21/4/040201. [17] 张宏彬, 吕洪升, 顾书龙. 完整约束力学系统保 Lie 对称性差分格式[J]. 物理学报, 2010,59(8): 5213-5218. [18] 张毅. 相空间中非保守系统的 Herglotz 广义变分原理及其 Noether 定理[J]. 力学学报, 2016, 48(6): 1382-1389. |