[1] YANG D, MA P, HOU Z,et al. Current advances in lanthanide ion(Ln3+)-based upconversionnanoma-terials for drug delivery[J]. Chem Soc Rev, 2015, 44:1416-1448.DOI: 10.1039/c4cs00155a. [2] GAI S, LI C, YANG P,et al.Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications [J]. Chem Rev, 2014, 114:2343-2389.DOI: 10.1021/cr4001594. [3] KANG X, LI C, CHENG Z,et al. Lanthanide-doped hollow nanomaterials as theranostic agents [J]. Wiley Interdiscip Rev NanomedNanobiotechnol, 2014, 6:80-101.DOI: 10.1002/wnan.1251.DOI: 10.1002/wnan.1251. [4] DAI Y, XIAO H, LIU J, et al. In vivo multimodality imaging and cancer therapy by near-infrared light-triggered trans-platinum pro-drug-conjugated upconverison nanoparticles[J]. J Am Chem Soc, 2013, 135:18920-18929. DOI: 10.1021/ja410028q. [5] HOU Z, LI C, MAP,et al.Up-conversion luminescent and porous NaYF4:Yb3+,Er3+@SiO2 nanocomposite fibers for anti-cancer drug delivery and cell imaging[J]. Adv Funct Mater, 2012, 22:2713-2722.DOI: 10.1002/adfm.201200082. [6] ZhANG L, WU H B, MADHAVI S, et al. Formation of Fe2O3microboxes with hierarchical shell structures from metal-organic frameworks and their lithium storage properties [J]. J Am Chem Soc, 2012, 134:17388-17391.DOI: 10.1021/ja307475c. [7] WANG W, DAHL M, YIN Y,et al. Hollow nanocrystals through the nanoscale kirkendall effect [J]. Chem Mater, 2013, 25:1179-1189.DOI: 10.1021/cm3030928. [8] ZhANG J, WANG Y, XU Z,et al. Preparation and drug-delivery properties of hollow YVO4:Ln3+ and mesoporous YVO4:Ln3+@nSiO2@mSiO2(Ln = Eu,Yb, Er, and Ho)[J]. J Mater Chem B, 2013, 1:330-338.DOI: 10.1039/C2TB00045H. [9] LOU X W, ARCHER L A, YANG Z C. Hollow micro-/nanostructures: synthesis and applications[J]. Adv Mater, 2008, 20:3987-4019.DOI: 10.1002/adma.200800854. [10] WEI W, SONG L X, GUO L,et al. SnO2 hollow nanospheres assembled by single layer nanocrystals as anode material for high performance Li ion batteries [J]. Chin Chem Lett, 2015, 26:124-128.DOI: 10.1016/j.cclet.2014.09.023. [11] LV R, YANG P, HE F. Hollow structured Y2O3:Yb/Er-Cu</sub>xS nanospheres with controllable size for simultaneous chemo/photothermal therapy and bioimaging [J]. Chem Mater, 2015, 27:483-496.DOI: 10.1021/cm503647k. [12] TIAN G, GU Z, LIU X,et al. Facile fabrication of rare-earth-doped Gd2O3 hollow spheres with upconversion luminescence, magnetic resonance, and drug delivery properties [J]. J Phys Chem C, 2011, 115:23790-23796.DOI: 10.1021/jp209055t. [13] XU Z, MA P, LI C,et al. Monodisperse core-shell structured up-conversion Yb(OH)CO3@YbPO4:Er3+ hollow spheres as drug carriers [J]. Biomaterials, 2011, 32:4161-4173.DOI: 10.1016/j.biomaterials.2011.02.026. [14] YANG D, YANG G, WANG X,et al. Y2O3:Yb,Er@mSiO2-Cu</sub>xS double-shelled hollow spheres for enhanced chemo-/photothermal anti-cancer therapy and dual-modal imaging [J]. Nanoscale, 2015, 7:12180-12191.DOI: 10.1039/c5nr02269j. [15] VIVERO-ESCOTO J L, SlOWING II, WU C, et al. Photoinduced intracellular controlled release drug delivery in human cells by gold-capped mesoporous silica nanosphere [J]. J Am Chem Soc, 2009, 131:3462-3463.DOI: 10.1021/ja900025f. [16] GE K, ZHANG C, JIA G,et al. Defect-related luminescent mesoporous silica nanoparticles employed for novel detectable nanocarrier [J]. ACS Appl Mater Interfaces, 2015, 7:10905-10914.DOI: 10.1021/acsami.5b02146. [17] ZHANG S L, CHU Z Q, YIN C,et al. Controllable drug release and simultaneously carrier decomposition of SiO2-drug composite nanoparticles [J]. J Am Chem Soc, 2013, 135:5709-5716.DOI: org/10.1021/ja3123015. [18] PARK J H, GU L, VON MALTZAHNG,et al. Biodegradable luminescent porous silicon nanoparticles for in vivo applications [J]. Nat Mater, 2009, 8:331-336.DOI: 10.1038/nmat2398. [19] CHATTERJEE D K, RUFAIHAH HAH A J, ZHANG Y. Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals [J]. Biomaterials, 2008, 29:937-943.DOI: org/10.1016/j.biomaterials.2007.10.051. [20] XING H, BU W, REN Q,et al. A NaYbF4:Tm3+ nanoprobe for CT and NIR-to-NIR fluorescent bimodal imaging [J]. Biomaterials, 2012, 33:5384-5393.DOI: 10.1016/j.biomaterials.2012.04.002. [21] GNACH A, LIPINSKI T, BEDNARKIEWICZA,et al. A. Upconverting nanoparticles: assessing the toxicity[J]. Chem Soc Rev, 2015, 44:1561-1584.DOI: 10.1039/C4CS00177J. [22] AUFFAN M, ROSE J, ORSIERE T,et al. CeO2 nanoparticles induce DNA damage towards human dermal fibroblasts in vitro [J]. Nanotoxicology, 2009, 3:161-171.DOI: org/10.1080/17435390902788086. [23] EOM H J, CHOI J. Oxidative Stress of CeO2 nanoparticles via p38-Nrf-2 signaling pathway in human bronchial epithelial cell, beas-2B [J]. Toxicol Lett, 2009, 187:77-83.DOI: 10.1016/j.toxlet.2009.01.028. [24] ZHAO J, NIU W, ZHANG L,et al.A template-free and surfactant-free method for high-yield synthesis of highly monodisperse 3-aminophenol-formaldehyde resin and carbon nano/microspheres[J].Macromolecules, 2013, 46(1): 140-145.DOI: 10.1021/ma302119t. [25] GE K, REN H, SUN W,et al. Walnut kernel-like mesoporous silica nanoparticles as effective drug carrier for cancer therapy in vitro [J]. J Nanopart Res, 2016, 18:81.DOI: 10.1007/s11051-016-3380-7. [26] HU X, HAO X, WU Y,et al. Multifunctional hybrid silica nanoparticles for controlled doxorubicin loading and release with thermal and pH dual response [J]. J Mater Chem B, 2013, 1:1109-1118.DOI: 10.1039/c2tb00223j. |