[1] FERRAMOSCA A, GIACOMO M D, MOSCATELLI N, et al. Obesity and male infertility: role of fatty acids in the modulation of sperm energetic metabolism[J]. European Journal of Lipid Science and Technology, 2018:1700451. DOI:10.1002/ejlt.201700451. [2] ORNELLAS F, CARAPETO P V, MANDARIM-DE-LACERDA C A, et al. Obese fathers lead to an altered metabolism and obesity in their children in adulthood: review of experimental and human studies[J]. Jornal de Pediatria, 2017:S0021755716304375. DOI:10.1016/j.jped.2017.02.004. [3] CRAIG J R, JENKINS T G, CARRELL D T, et al. Obesity, male infertility, and the sperm epigenome[J]. Fertility and Sterility, 2017, 107(4): 848-859. DOI:10.1016/j.fertnstert.2017.02.115. [4] JIA Y F, FENG Q, GE Z Y, et al. Obesity impairs male fertility through long-term effects on spermatogenesis[J]. BMC Urology, 2018,18:42. DOI:10.1186/s12894-018-0360-5. [5] MCPHERSON N O, FULLSTON T, BAKOS H W, et al. Obese father's metabolic state, adiposity, and reproductive capacity indicate son's reproductive health[J]. Fertility and Sterility, 2014,101(3):865-873.e1. DOI:10.1016/j.fertnstert.2013.12.007. [6] RAJENDER S, RAHUL P, MAHDI A A. Mitochondria, spermatogenesis and male infertility[J]. Mitochondrion, 2010,10(5):419-428. DOI:10.1016/j.mito.2010.05.015. [7] CHEN Q, YAN M, CAO Z, et al. Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder[J]. Science, 2016,351(6271):397-400. DOI:10.1126/science.aad7977. [8] WU L, LU Y, JIAO Y, et al. Paternal psychological stress reprograms hepatic gluconeogenesis in offspring[J]. Cell Metabolism, 2016,23(4):735-743. DOI:10.1016/j.cmet.2016.01.014. [9] YUAN T F, LI A, SUN X, et al. Transgenerational inheritance of paternal neurobehavioral phenotypes: stress, addiction, ageing and metabolism[J]. Molecular Neurobiology, 2016,53(9):6367-6376. DOI:10.1007/s12035-015-9526-2. [10] JENKINS T G, CARRELL D T. The sperm epigenome and potential implications for the developing embryo[J]. Reproduction, 2012,143(6):727-734. DOI:10.1530/rep-11-0450. [11] CONSITT L A, SAXENA G, SLYVKA Y, et al. Paternal high-fat diet enhances offspring whole-body insulin sensitivity and skeletal muscle insulin signaling early in life[J]. Physiological Reports, 2018,6(5):e13583. DOI:10.14814/phy2.13583. [12] KRAWETZ S A, KRUGER A, LALANCETTE C, et al. A survey of small RNAs in human sperm[J]. Human Reproduction, 2011,26(12):3401-3412. DOI:10.1093/humrep/der329. [13] JENKINS T G, ASTON K I, HOTALING J M, et al. Teratozoospermia and asthenozoospermia are associated with specific epigenetic signatures[J]. Andrology, 2016,4(5):843-849. DOI:10.1111/andr.12231. [14] DONKIN I, VERSTEYHE S, INGERSLEV L R, et al. Obesity and bariatric surgery drive epigenetic variation of spermatozoa in humans[J]. Cell Metabolism, 2016,23(2):369-378. DOI:10.1016/j.cmet.2015.11.004. [15] FULLSTON T, OHLSSON-TEAGUE E M C, PRINT C G, et al. Sperm microRNA content is altered in a mouse model of male obesity, but the same suite of microRNAs are not altered in offspring's sperm[J]. PLoS One, 2016,11(11):e0166076. DOI:10.1371/journal.pone.0166076. [16] FOURNIER C, LABRUNE E, LORNAGE J, et al. The impact of histones linked to sperm chromatin on embryo development and ART outcome[J]. Andrology, 2018,6(3):436-445. DOI:10.1111/andr.12478. [17] GARCÍ A-CARDONA C, HUANG F, GARCI A-VIVAS M, et al. DNA methylation of leptin and adiponectin promoters in children is reduced by the combined presence of obesity and insulin resistance[J]. International Journal of Obesity, 2014,38(11):1457-1465. DOI:10.1038/ijo.2014.30. [18] DING X, ZHENG D Y, FAN C N, et al. Genome-wide screen of DNA methylation identifies novel markers in childhood obesity[J]. Gene, 2015,566(1):74-83. DOI:10.1016/j.gene.2015.04.032. [19] BINDER N K, HANNAN N J, GARDNER D K. Paternal diet-induced obesity retards early mouse embryo development, mitochondrial activity and pregnancy health[J]. PLoS One, 2012,7(12):e52304. DOI:10.1371/journal.pone.0052304. [20] DHANA K, BRAUN K V E, NANO J, et al. An epigenome-wide association study of obesity-related traits[J]. American Journal of Epidemiology, 2018,187(8):1662-1669. DOI:10.1093/aje/kwy025. [21] SOUBRY A, SCHILDKRAUT J M, MURTHA A, et al. Paternal obesity is associated with IGF2 hypomethylation in newborns: results from a Newborn Epigenetics Study(NEST)cohort[J]. BMC Medicine, 2013,11:29. DOI:10.1186/1741-7015-11-29. [22] SOUBRY A, GUO L S, HUANG Z Q, et al. Obesity-related DNA methylation at imprinted genes in human sperm: Results from the TIEGER study[J]. Clinical Epigenetics, 2016,8:51. DOI:10.1186/s13148-016-0217-2. [23] MCSWIGGIN M, ODOHERTY M. Epigenetic reprogramming during spermatogenesis and male factor infertility[J]. Reproduction, 2018,156(2):R9-R21. DOI:10.1530/rep-18-0009. [24] KOBAYASHI H, ARIMA T. Genomic imprinting in mammals[J]. Journal of Mammalian Ova Research, 2006,23(4):143-149. DOI:10.1274/jmor.23.143. [25] MURPHY S K, ADIGUN A, HUANG Z Q, et al. Gender-specific methylation differences in relation to prenatal exposure to cigarette smoke[J]. Gene, 2012,494(1):36-43. DOI:10.1016/j.gene.2011.11.062. [26] MARTIN E M, FRY R C. Environmental influences on the epigenome: exposure- associated DNA methylation in human populations[J]. Annual Review of Public Health, 2018,39(1):309-333. DOI:10.1146/annurev-publhealth-040617-014629. [27] KIMURA H, TADA M, NAKATSUJI N, et al. Histone code modifications on pluripotential nuclei of reprogrammed somatic cells[J]. Molecular and Cellular Biology, 2004,24(13):5710-5720. DOI:10.1128/mcb.24.13.5710-5720.2004. [28] BAO J Q, BEDFORD M T. Epigenetic regulation of the histone-to-protamine transition during spermiogenesis[J]. Reproduction, 2016,151(5):R55-R70. DOI:10.1530/rep-15-0562. [29] BEN MAAMAR M, SADLER-RIGGLEMAN I, BECK D, et al. Epigenetic transgenerational inheritance of altered sperm histone retention sites[J]. Scientific Reports, 2018,8:5308. DOI:10.1038/s41598-018-23612-y. [30] TERASHIMA M, BARBOUR S, REN J K, et al. Effect of high fat diet on paternal sperm histone distribution and male offspring liver gene expression[J]. Epigenetics, 2015,10(9):861-871. DOI:10.1080/15592294.2015.1075691. [31] ERKEK S, HISANO M, LIANG C Y, et al. Molecular determinants of nucleosome retention at CpG-rich sequences in mouse spermatozoa[J]. Nature Structural & Molecular Biology, 2013,20(7):868-875. DOI:10.1038/nsmb.2599. [32] PUSCHENDORF M, TERRANOVA R, BOUTSMA E, et al. PRC1 and Suv39h specify parental asymmetry at constitutive heterochromatin in early mouse embryos[J]. Nature Genetics, 2008,40(4):411-420. DOI:10.1038/ng.99. [33] VAN DE WERKEN C, VAN DER HEIJDEN G W, ELEVELD C, et al. Paternal heterochromatin formation in human embryos is H3K9/HP1 directed and primed by sperm-derived histone modifications[J]. Nature Communications, 2014,5:5868. DOI:10.1038/ncomms6868. [34] SUH N, BAEHNER L, MOLTZAHN F, et al. MicroRNA function is globally suppressed in mouse oocytes and early embryos[J]. Current Biology, 2010,20(3):271-277. DOI:10.1016/j.cub.2009.12.044. [35] WAGNER K D, WAGNER N, GHANBARIAN H, et al. RNA induction and inheritance of epigenetic cardiac hypertrophy in the mouse[J]. Developmental Cell, 2008,14(6):962-969. DOI:10.1016/j.devcel.2008.03.009. [36] LV C, YU W X, WANG Y, et al. MiR-21in extracellular vesicles contributes to the growth of fertilized eggs and embryo development in mice[J]. Bioscience Reports, 2018,38(4):BSR20180036. DOI:10.1042/bsr20180036. [37] FULLSTON T, OHLSSON TEAGUE E M C, PALMER N O, et al. Paternal obesity initiates metabolic disturbances in two generations of mice with incomplete penetrance to the F2 generation and alters the transcriptional profile of testis and sperm microRNA content[J]. The FASEB Journal, 2013,27(10):4226-4243. DOI:10.1096/fj.12-224048. [38] BAKOS H W, MITCHELL M, SETCHELL B P, et al. The effect of paternal diet-induced obesity on sperm function and fertilization in a mouse model[J]. International Journal of Andrology, 2011,34(5pt1):402-410. DOI:10.1111/j.1365-2605.2010.01092.x. [39] HOSSEINI M, GUNEL T, GUMUSOGLU E, et al. MicroRNA expression profiling in placenta and maternal plasma in early pregnancy loss[J]. Molecular Medicine Reports, 2018,17(4):4941-4952. DOI:10.3892/mmr.2018.8530. [40] DE CASTRO BARBOSA T, INGERSLEV L R, ALM P S, et al. High-fat diet reprograms the epigenome of rat spermatozoa and transgenerationally affects metabolism of the offspring[J]. Molecular Metabolism, 2016,5(3):184-197. DOI:10.1016/j.molmet.2015.12.002. [41] CHAVARRO J E, TOTH T L, WRIGHT D L, et al. Body mass index in relation to semen quality, sperm DNA integrity, and serum reproductive hormone levels among men attending an infertility clinic[J]. Fertility and Sterility, 2010,93(7):2222-2231. DOI:10.1016/j.fertnstert.2009.01.100. [42] BINDER N K, MITCHELL M, GARDNER D K. Parental diet-induced obesity leads to retarded early mouse embryo development and altered carbohydrate utilisation by the blastocyst[J]. Reproduction, Fertility and Development, 2012,24(6):804-812. DOI:10.1071/rd11256. [43] BINDER N K, HANNAN N J, GARDNER D K. Paternal diet-induced obesity retards early mouse embryo development, mitochondrial activity and pregnancy health[J]. PLoS One, 2012,7(12):e52304. DOI:10.1371/journal.pone.0052304 [44] FULLSTON T, SHEHADEH H, SANDEMAN L Y, et al. Female offspring sired by diet induced obese male mice display impaired blastocyst development with molecular alterations to their ovaries, oocytes and cumulus cells[J]. Journal of Assisted Reproduction and Genetics, 2015,32(5):725-735. DOI:10.1007/s10815-015-0470-x. [45] NG S F, LIN R C Y, MALONEY C A, et al. Paternal high-fat diet consumption induces common changes in the transcriptomes of retroperitoneal adipose and pancreatic islet tissues in female rat offspring[J]. The FASEB Journal, 2014,28(4):1830-1841. DOI:10.1096/fj.13-244046. [46] ALBERIO R. Transcriptional and epigenetic control of cell fate decisions in early embryos[J]. Reproduction, Fertility and Development, 2018,30(1):73. DOI:10.1071/rd17403. [47] NG S F, LIN R C Y, LAYBUTT D R, et al. Chronic high-fat diet in fathers programs β-cell dysfunction in female rat offspring[J]. Nature, 2010,467(7318):963-966. DOI:10.1038/nature09491. |