[1] HAN S P. Variable metric methods for minimizing a class of nondifferentiable functions[J]. Mathematical Programming, 1981, 20(1): 1-13. DOI:10.1007/BF01589328. [2] OSBORNE M R, WATSON G A. An algorithm for minimax approximation in the nonlinear case[J]. Computer Journal, 1969, 12(1): 63-68. DOI:10.1093/comjnl/12.1.63. [3] ZHANG J L. A robust trust region method for nonlinear optimization with inequality constraint[J]. Applied Mathematics and Computation, 2006, 176(2): 688-699. DOI:10.1016/j.amc.2005.10.015. [4] NOCEDAL J, WRIGHT S. Numerical optimization[M]. New York: Springer, 1999. [5] FLETCHER R, LEYFFER S. Nonlinear programming without a penalty function[J]. Mathematical Programming, 2002, 91(2): 239-269. DOI:10.1007/s101070100244. [6] CHIN C M, FLETCHER R. On the global convergence of an SLP-filter algorithm that takes EQP steps[J]. Mathematical Programming, 2003, 96(1): 161-177. DOI:10.1007/s10107-003-0378-6. [7] FLETCHER R, GOULD N, LEYFFER S, et al. Global convergence of a trust region SQP filter algorithm for general nonlinear programming[J]. SIAM Journal on Optimization, 2002,13(3): 635-659. DOI:10.1137/S1052623499357258. [8] FLETCHER R, LEYFFER S, TOINT P L. On the global convergence of a filter-SQP algorithm[J]. SIAM Journal on Optimization, 2002, 13(1): 44-59. DOI:10.1137/S105262340038081X. [9] ULBRICH M, ULBRICH S, VICENTE L N. A globally convergent primal-dual interior-point filter method for nonlinear programming[J]. Mathematical Programming, 2004, 100(2): 379-410. DOI:10.1007/s10107-003-0477-4. [10] AUDET C, DENNIS J E. A pattern search filter method for nonlinear programming without derivatives[J]. SIAM Journal on Optimization, 2004, 14(4): 980-1010. DOI:10.1137/S105262340138983X. [11] KARAS E, RIBEIRO A, SAGASTIZÁBAL C, et al. A bundle filter method for nonsmooth convex constrained optimization[J]. Mathematical Programming, 2009, 116(1/2): 297-320. DOI:10.1007/s10107-007-0123-7. [12] ULBRICH M, ULBRICH S. Non-monotone trust region methods for nonlinear equality constrained optimization without a penalty function[J]. Mathematical Programming, 2003, 95(1): 103-135. DOI:10.1007/s10107-002-0343-9. [13] ULBRICH S. On the superlinear local convergence of a filter-SQP method[J]. Mathematical Programming, 2004, 100(1): 217-245. DOI:10.1007/s10107-003-0491-6. [14] NIE P Y, MA C F. A trust region filter method for general non-linear programming[J]. Applied Mathematics and Computation, 2006, 172(2): 1000-1017. DOI:10.1016/j.amc.2005.03.004. [15] ZHAO Q, GUO N. A nonmonotone filter method for minimax problems[J]. Applied Mathematics, 2011, 2(11): 1372-1377. DOI:10.4236/am.2011.211193. [16] HU Q J, HU J Z. A sequential quadratic programming algorithm for nonlinear minimax problems[J]. Bulletin of the Australian Mathematical Society, 2007, 76(3): 353-368. DOI:10.1017/S0004972700039745. [17] 苏珂,任乐乐,荣自兴,等.无约束优化的修正非单调记忆梯度法[J].河北大学学报(自然科学版),2018,38(6):561-566. DOI:10.3969/j.issn.1000-1565.2018.06.001. [18] SU K, PU D G. A nonmonotone filter trust region method for nonlinear constrained optimization[J]. Journal of Computation and Applied Mathematics, 2009, 223(1): 230-239. DOI:10.1016/j.cam.2008.01.013. |