[1] ZHAO P, QIN F, HUANG Z, et al. Morphology-dependent oxygen vacancies and synergistic effects of Ni/CeO2 catalysts for N2O decomposition[J]. Catalysis Science & Technology, 2018, 8(1): 276-288. DOI: 10.1039/c7cy02301d. [2] PIAO J, LIU X, WU J, et al. Construction of uniform Cobalt-based nanoshells and its potential for improving Li-ion battery performance[J]. ACS Applied Materials & Interfaces, 2018, 10(27): 22896-22901. DOI:10.1021/acsami.8b08528. [3] ZHU Q H, QIU B C, DU M M, et al. Nickel boride cocatalyst boosting efficient photocatalytic hydrogen evolution reaction[J]. Industrial & Engineering Chemistry Research, 2018, 57(24): 8125-8130. DOI:10.1021/acs.iecr.8b01376. [4] 李兴红,江静,杨莉纳,等.钴铁氧体磁性固相萃取结合高效液相色谱法测定果蔬汁中4种人工合成色素[J].河北大学学报(自然科学版), 2019, 39(1): 41-48. DOI:10.3969/j.issn.1000-1565.2019.01.008. [5] LYU S, WANG L, ZHANG J H, et al. Role of active phase in fischer-tropsch synthesis: experimental evidence of CO activation over single-phase cobalt catalysts[J]. ACS Catalysis, 2018, 8(9): 7787-7798. DOI: 10.1021/acscatal.8b00834. [6] WESTSTRATE C J, NIEMANTSVERDRIET J W. CO as a promoting spectator species of CxHy conversions relevant for fischer-tropsch chain growth on cobalt: evidence from temperature programmed reaction and reflection absorption infrared spectroscopy[J]. ACS Catalysis, 2018, 8(11): 10826-10835. DOI: 10.1021/acscatal.8b02743. [7] YAO B L, DENG Y F, LI T R, et al. Construction and magnetic study of a trigonal-prismatic cobalt(Ⅱ)single-ion magnet[J]. Inorganic Chemistry, 2018, 57(22): 14047-14051. DOI: 10.1021/acs.inorgchem.8b02692. [8] WANG W B, WANG R Y, LIU L N, et al. Coordination frameworks containing magnetic single chain of imidazole dicarboxylate-bridged Cobalt(II)/Nickel(II): syntheses, structures, and magnetic properties[J]. Crystal Growth & Design, 2018, 18(6): 3449-3457. DOI:10.1021/acs.cgd.8b00174. [9] WU G J, CHEN S H, REN Y, et al. Laser-induced magnetization dynamics in interlayer-coupled [Ni/Co] 4/Ru/[Co/Ni] 3 perpendicular magnetic films for information storage[J]. ACS Applied Nano Materials, 2019,2(8):5140-5148. DOI:10.1021/acsanm.9b01028. [10] BARLA A, BELLINI V, RUSPONI S, et al. Complex magnetic exchange coupling between Co nanostructures and Ni(Ⅲ)across epitaxial graphene[J]. ACS Nano, 2016, 10(1): 1101-1107. DOI: 10.1021/acsnano.5b06410. [11] ROHRMANN U, SCHAÄFER R. Stern-gerlach experiments on Fe@Sn12: magnetic response of a jahn-teller distorted endohedrally doped molecular cage cluster[J]. The Journal of Physical Chemistry C, 2015, 119(20): 10958-10961. DOI: 10.1021/jp510972k. [12] HÅKAN WENNERSTRÖM, WESTLUND P O. The Stern-Gerlach experiment and the effects of spin relaxation[J]. Physical Chemistry Chemical Physics, 2012, 14(5):1677-1684. DOI: 10.1039/c2cp22173j. [13] FERNANDES R, PATEL N, MIOTELLO A, et al. Studies on catalytic behavior of Co-Ni-B in hydrogen production by hydrolysis of NaBH4[J]. Journal of Molecular Catalysis A: Chemical, 2009, 298(1/2): 1-6. DOI:10.1016/j.molcata.2008.09.014. [14] YU X G. Hyperbolic multi-topology and the basic principle in quantum mechanics[J]. Advances in Applied Clifford Algebras, 1999, 9(1): 109-118. DOI:10.1007/BF03041943. [15] HAY P J. Gaussian basis sets for molecular calculations. The representation of 3d orbitals in transition‐metal atoms[J]. The Journal of Chemical Physics, 1977, 66(10): 4377-4384. DOI:10.1063/1.433731. [16] HAY P J, WADT W R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg[J]. The Journal of chemical physics, 1985, 82(1): 270-283. DOI:10.1063/1.448799. [17] LU T, CHEN F W. Multiwfn: a multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry, 2012, 33(5): 580-592. DOI:10.1002/jcc.22885. [18] 徐诗浩,方志刚,韩建铭,等.团簇V3B2成键及磁学性质研究[J].广西师范大学学报(自然科学版),2017,35(3):89-96.DOI:10.16088/j.issn.1001-6600.2017.03.011. [19] KLABUNDE W, PHIPPS T E. The Stern-Gerlach experiment with Iron[J]. Physical Review, 1934, 45(1):59. DOI:10.1103/PhysRev.45.59. |