[1] VAPNIK V N. The nature of statistical learning theory[M]. New York: Springer New York, 1995. DOI:10.1007/978-1-4757-2440-0. [2] JAYADEVA R K, KHEMCHANDANI R, CHANDRA S. Twin support vector machines for pattern classification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(5): 905-910. DOI:10.1109/tpami.2007.1068. [3] TOMAR D, AGARWAL S. Twin support vector machine: a review from 2007 to 2014[J]. Egyptian Informatics Journal, 2015, 16(1): 55-69. DOI:10.1016/j.eij.2014.12.003. [4] SHAO Y H, ZHANG C H, WANG X B, et al. Improvements on twin support vector machines[J]. IEEE Transactions on Neural Networks, 2011, 22(6): 962-968. DOI:10.1109/tnn.2011.2130540. [5] HUANG H J, WEI X X, ZHOU Y Q. Twin support vector machines: a survey[J]. Neurocomputing, 2018, 300: 34-43. DOI:10.1016/j.neucom.2018.01.093. [6] DING S F, ZHANG N, ZHANG X K, et al. Twin support vector machine: theory, algorithm and applications[J]. Neural Computing and Applications, 2017, 28(11): 3119-3130. DOI:10.1007/s00521-016-2245-4. [7] PENG X J. A ν-twin support vector machine(ν-TSVM)classifier and its geometric algorithms[J]. Information Sciences, 2010, 180(20): 3863-3875. DOI:10.1016/j.ins.2010.06.039. [8] YU L A, ZHOU R T, TANG L, et al. A DBN-based resampling SVM ensemble learning paradigm for credit classification with imbalanced data[J]. Applied Soft Computing, 2018, 69: 192-202. DOI:10.1016/j.asoc.2018.04.049. [9] KHEMCHANDANI R, SHARMA S. Robust least squares twin support vector machine for human activity recognition[J]. Applied Soft Computing, 2016, 47: 33-46. DOI:10.1016/j.asoc.2016.05.025. [10] HUANG X, SHI L, SUYKENS J A. Support vector machine classifier with pinball loss[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(5): 984-997. DOI:10.1109/tpami.2013.178. [11] TANVEER M, SHARMA A, SUGANTHAN P N. General twin support vector machine with pinball loss function[J]. Information Sciences, 2019, 494: 311-327. DOI:10.1016/j.ins.2019.04.032. [12] XU Y, YANG Z, PAN X. A novel twin support-vector machine with pinball loss[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(2): 359-370. DOI:10.1109/tnnls.2015.2513006. [13] LIN C F, WANG S D. Fuzzy support vector machines with automatic membership setting[M] //Support Vector Machines: Theory and Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005: 233-254. DOI:10.1007/10984697_11. [14] LI K, MA H Y. A fuzzy twin support vector machine algorithm[J]. International Journal of Application or Innovation in Engineering & Management, 2013, 2(3):459-465. [15] 丁胜锋.一种改进的双支持向量机[J].辽宁石油化工大学学报,2012,32(4):76-79,82. DOI:10.3969/j.issn.1672-6952.2012.04.020. [16] 方佳艳,刘峤,吴德,等.基于模糊C-均值的相似性特征转换光滑支持向量机[J].电子学报,2018,46(11):2714-2724. DOI:10.3969/j.issn.0372-2112.2018.11.019. [17] YANG X W, ZHANG G Q, LU J, et al. A kernel fuzzy c-means clustering-based fuzzy support vector machine algorithm for classification problems with outliers or noises[J]. IEEE Transactions on Fuzzy Systems, 2011, 19(1): 105-115. DOI:10.1109/tfuzz.2010.2087382. [18] CHU M X, LIU X P, GONG R F, et al. Multi-class classification method using twin support vector machines with multi-information for steel surface defects[J]. Chemometrics and Intelligent Laboratory Systems, 2018, 176: 108-118. DOI:10.1016/j.chemolab.2018.03.014. [19] HSU C W, LIN C J. A comparison of methods for multiclass support vector machines[J]. IEEE Transactions on Neural Networks, 2002, 13(2): 415-425. DOI:10.1109/72.991427. [20] 丁世飞,张健,张谢锴,等.多分类孪生支持向量机研究进展[J].软件学报,2018,29(1):89-108. DOI:10.13328/j.cnki.jos.005319. [21] XU Y T, GUO R, WANG L S. A twin multi-class classification support vector machine[J]. Cognitive Computation, 2013, 5(4): 580-588. DOI:10.1007/s12559-012-9179-7. [22] YANG Z X, SHAO Y H, ZHANG X S. Multiple birth support vector machine for multi-class classification[J]. Computing and Applications, 2013, 22(1): 153-161. DOI:10.1007/s00521-012-1108-x. [23] BLACK C, MERS C J. UCI Repository for machine learning databases[EB/OL]. Irvine, CA: University of California, School of Information and Computer Science.(1998-01-12)[2018-11-20].http://archive.ics.uci.edu/ml. |