[1] QIU K, HAYDEN A C S. Development of a silicon concentrator solar cell based TPV power system[J]. Energy Convers Manag, 2006, 47(4): 365-376. DOI:10.1016/j.enconman.2005.04.008. [2] BITNAR B. Silicon, germanium and silicon/germanium photocells for thermophotovoltaics applications[J]. Semicond Sci Technol, 2003, 18(5): S221-S227. DOI:10.1088/0268-1242/18/5/312. [3] ATTOLINI G, BOSI M, FERRARI C, et al. Design guidelines for thermo-photo-voltaic generator: The critical role of the emitter size[J]. Appl Energy, 2013, 103: 618-626. DOI:10.1016/j.apenergy.2012.10.032. [4] FERRARI C, MELINO F, BOSI M. The critical role of emitter size in thermo-photovoltaic generators[J]. Sol Energy Mater Sol Cells, 2013, 113: 20-25. DOI:10.1016/j.solmat.2013.01.031. [5] KLIPSTEIN P C, LIVNEH Y, GLOZMAN A, et al. Modeling InAs/GaSb and InAs/InAsSb superlattice infrared detectors[J]. Journal Elec Materi, 2014, 43(8): 2984-2990. DOI:10.1007/s11664-014-3169-3. [6] WANG Y, LIU G J, LI J C, et al. Study of the ohmic contact of GaSb-based semiconductor laser[J]. Chin J Lasers, 2012, 39(1): 0102010. DOI:10.3788/CJL201239.0102010. [7] DEL ALAMO J A. Nanometre-scale electronics with III-V compound semiconductors[J]. Nature, 2011, 479(7373): 317-323. DOI:10.1038/nature10677. [8] BARIL N, BANDARA S, HOEGLUND L, et al. Low operating bias InAs/GaSb strain layer superlattice LWIR detector[J]. Infrared Phys Technol, 2015, 70: 58-61. DOI:10.1016/j.infrared.2014.10.013. [9] KLIPSTEIN P C, LIVNEH Y, KLIN O, et al. A k·p model of InAs/GaSb type II superlattice infrared detectors[J]. Infrared Phys Technol, 2013, 59: 53-59. DOI:10.1016/j.infrared.2012.12.009. [10] DELMAS M, ROSSIGNOL R, RODRIGUEZ J B, et al. Design of InAs/GaSb superlattice infrared barrier detectors[J]. Superlattices Microstructure, 2017, 104: 402-414. DOI:10.1016/j.spmi.2017.03.001. [11] HUANG Y, XIONG M, WU Q H, et al. High-performance mid-wavelength InAs/GaSb superlattice infrared detectors grown by production-scale metalorganic chemical vapor deposition[J]. IEEE J Quantum Electron, 2017, 53(5): 1-5. DOI: 10.1109/jqe.2017.2740121. [12] HENRY N C, BROWN A, KNORR D B, et al. Surface conductivity of InAs/GaSb superlattice infrared detectors treated with thiolated self-assembled monolayers[J]. Appl Phys Lett, 2016, 108(1): 011606. DOI:10.1063/1.4938168. [13] 魏相飞,何锐,张刚,等.InAs/GaSb量子阱中太赫兹光电导特性[J].物理学报,2018, 67(18): 20180769. DOI:10.7498/aps.67.20180769. [14] ZHANG Z K, PAN W W, LIU J L, et al. A review on MBE-grown HgCdSe infrared materials on GaSb(211)B substrates[J]. Chinese Phys B, 2019, 28(1): 018103. DOI:10.1088/1674-1056/28/1/018103. [15] VURGAFTMAN I, MEYER J R, RAM-MOHAN L R. Band parameters for III-V compound semiconductors and their alloys [J]. Journal of Applied Physics, 2001, 89(11):5815-5875. DOI:10.1063/1.1368156. [16] WANG Y, CHEN N F, ZHANG X W, et al. Evaluation of thermal radiation dependent performance of GaSb thermophotovoltaic cell based on an analytical absorption coefficient model[J]. Sol Energy Mater Sol Cells, 2010, 94(10): 1704-1710. DOI:10.1016/j.solmat.2010.05.032. [17] KHVOSTIKOV V P, KHVOSTIKOVA O A, GAZARYAN P Y, et al. Photovoltaic cells based on GaSb and Ge for solar and thermophotovoltaic applications[J]. J Sol Energy Eng, 2007, 129(3): 291-297. DOI:10.1115/1.2734572. [18] VLASOV A S, KHVOSTIKOV V P, KARLINA L B, et al. Spectral-splitting concentrator photovoltaic modules based on AlGaAs/GaAs/GaSb and GaInP/InGaAs(P)solar cells[J]. Tech Phys, 2013, 58(7): 1034-1038. DOI:10.1134/S106378421307027X.] [19] CEDERBERG J G, BLAICH J D, GIRARD G R, et al. The development of(InGa)As thermophotovoltaic cells on InP using strain-relaxed In(PAs)buffers[J]. J Cryst Growth, 2008, 310(15): 3453-3458. DOI:10.1016/j.jcrysgro.2008.04.037. [20] QIU K, HAYDEN A C S, MAUK M G, et al. Generation of electricity using InGaAsSb and GaSb TPV cells in combustion-driven radiant sources[J]. Sol Energy Mater Sol Cells, 2006, 90(1): 68-81. DOI:10.1016/j.solmat.2005.02.002. [21] KRIER A, YIN M, MARSHALL A R J, et al. Low bandgap InAs-based thermophotovoltaic cells for heat-electricity conversion[J]. Journal Elec Materi, 2016, 45(6): 2826-2830. DOI:10.1007/s11664-016-4373-0. [22] LI M Z, CHEN X L, LI H L, et al. Optoelectronic properties of single-crystalline GaInAsSb quaternary alloy nanowires[J]. Chinese Phys B, 2018, 27(7): 078101. DOI:10.1088/1674-1056/27/7/078101. [23] QIU K, HAYDEN A C S. Direct thermal to electrical energy conversion using very low bandgap TPV cells in a gas-fired furnace system[J]. Energy Convers Manag, 2014, 79: 54-58. DOI:10.1016/j.enconman.2013.12.017. [24] LIU Z, QIU K. A TPV power system consisting of a composite radiant burner and combined cells[J]. Energy, 2017, 141: 892-897. DOI:10.1016/j.energy.2017.09.111. [25] LOU Y Y, ZHANG X L, HUANG A B, et al. Enhanced thermal radiation conversion in a GaSb/GaInAsSb tandem thermophotovoltaic cell[J]. Sol Energy Mater Sol Cells, 2017, 172: 124-132. DOI:10.1016/j.solmat.2017.07.030. [26] TANG L L, FRAAS L M, LIU Z M, et al. The theoretical performance of GaInAsSb and GaSb cells versus IR emitter temperature in thermophotovoltaic systems[J]. IEEE Trans Electron Devices, 2016, 63(9): 3591-3598. DOI:10.1109/ted.2016.2589264. [27] PENG X C, ZHANG B L, LI G X, et al. Simulation of temperature-dependent material parameters and device performances for GaInAsSb thermophotovoltaic cell[J]. Infrared Phys Technol, 2011, 54(6): 454-459. DOI:10.1016/j.infrared.2011.08.005. [28] 潘凤春,林雪玲,陈焕铭.C掺杂金红石相TiO2的电子结构和光学性质的第一性原理研究[J].物理学报,2015, 64(22): 224218. DOI:10.7498/aps.64.224218. [29] 史阿曼,屈世显.Mg共掺ZnO电子结构与光学性质的第一性原理计算[J].陕西师范大学学报(自然科学版),2012, 40(4): 23-29. DOI:10.3969/j.issn.1672-4291.2012.04.006. [30] 赵大洲.激光染料掺杂介孔SiO2微球的光学特性研究[J].陕西师范大学学报(自然科学版),2016, 44(6): 48-51. DOI:10.15983/j.cnki.jsnu.2016.06.362. [31] SEGALL M D, LINDAN P J D, PROBERT M J, et al. First-principles simulation: ideas, illustrations and the CASTEP code[J]. J Phys: Condens Matter, 2002, 14(11): 2717-2744. DOI:10.1088/0953-8984/14/11/301. [32] PERDEW J P, WANG Y. Accurate and simple analytic representation of the electron-gas correlation energy[J]. Phys Rev B, 1992, 45(23): 13244. DOI:10.1103/physrevb.45.13244. [33] MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations[J]. Phys Rev B, 1976, 13(12): 5188. DOI:10.1103/physrevb.13.5188. [34] PACK J D, MONKHORST H J. “Special points for Brillouin-zone integrations”: a reply[J]. Phys Rev B, 1977, 16(4): 1748. DOI:10.1103/physrevb.16.1748. [35] 黄昆,韩汝琦. 固体物理学[M]. 北京: 高等教育出版社,1988. [36] TU N T, HAI P N, ANH L D, et al.(Ga, Fe)Sb: a p-type ferromagnetic semiconductor[J]. Appl Phys Lett, 2014, 105(13): 132402. DOI:10.1063/1.4896539. [37] TU N T, HAI P N, ANH L D, et al. High-temperature ferromagnetism in heavily Fe-doped ferromagnetic semiconductor(Ga, Fe)Sb[J]. Appl Phys Lett, 2016, 108(19): 192401. DOI:10.1063/1.4948692. [38] SEÑA N, DUSSAN A, MESA F, et al. Electronic structure and magnetism of Mn-doped GaSb for spintronic applications: a DFT study[J]. J Appl Phys, 2016, 120(5): 051704. DOI:10.1063/1.4958946. ( |