[1] 王海洲,王冠.基于深度学习的人工智能医疗应用与存在的问题[J].沈阳大学学报(自然科学版), 2019, 31(2): 118-121. DOI: 10.16103/j.cnki.21-1583/n.2019.02.007. [2] 邹文凯,陆慧娟,叶敏超,等.基于卷积神经网络的乳腺癌组织病理图像分类[J].计算机工程与设计, 2020, 41(6): 1749-1754. DOI: 10.16208/j.issn1000-7024.2020.06.040. [3] I??塁IN A, DIREKOGˇLU C, ??塁AH M. Review of MRI-based brain tumor image segmentation using deep learning methods[J]. Procedia Computer Science, 2016, 102: 317-324. DOI: 10.1016/j.procs.2016.09.407. [4] ZHU W T, LIU C C, FAN W, et al. DeepLung: Deep 3D dual path nets for automated pulmonary nodule detection and classification[Z]. IEEE Winter Conference on Applications of Computer Vision(WACV), Lake Tahoe, USA, 2018. DOI: 10.1109/WACV.2018.00079. [5] 林秀娇,张栋,黄明毅,等.计算机辅助诊断根尖X线片图像中恒牙邻面龋初探[J].中华口腔医学杂志, 2020, 55(9): 654-660. DOI: 10.3760/cma.j.cn112144-20200209-00040. [6] CHUNG S W, HAN S S, LEE J W, et al. Automated detection and classification of the proximal humerus fracture by using deep learning algorithm[J]. Acta Orthop, 2018, 89(4): 468-473 DOI: 10.1080/17453674.2018.1453714. [7] 周清清,王佳硕,唐雯,等.基于卷积神经网络成人肋骨骨折CT自动检测和分类的应用研究[J].影像诊断与介入放射学, 2019, 29(1): 27-31. DOI: 10.3969/j.issn.1005-8001.2020.01.005. [8] BADGELEY M A, ZECH J R, OAKDEN-RAYNER L, et al. Deep learning predicts hip fracture using confounding patient and healthcare variables[J]. NPJ Digit Med, 2019, 2: 31. DOI:10.1038/s41746-019-0105-1. [9] GUAN B, YAO J K, ZHANG G S, et al. Thigh fracture detection using deep learning method based on new dilated convolutional feature pyramid network[J]. Pattern Recognition Letters, 2019, 125: 521-526. DOI: 10.1016/j.patrec.2019.06.015. [10] KITAMURA G, CHUNG C Y, MOORE B E. Ankle fracture detection utilizing a convolutional neural network ensemble implemented with a small sample, de novo training, and multiview incorporation[J]. J Digit Imaging, 2019, 32(4): 672-677. DOI: 10.1007/s10278-018-0167-7. [11] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. DOI: 10.1109/TPAMI.2016.2577031. [12] 曹之君,张良.基于Faster-RCNN的快速目标检测算法[J].航天控制, 2020, 38(4): 49-55. DOI: 10.16804/j.cnki.issn1006-3242.2020.04.004. [13] UIJLINGS J R R, SANDE K E A, GEVERS T, et al. Selective search for object recognition[J]. International Journal of Computer Vision, 2013, 104(2): 154-171. DOI: 10.1007/s11263-013-0620-5. [14] GIRSHICK R. Fast R-CNN[Z]. IEEE International Conference on Computer Vision(ICCV), Santiago, Chile, 2015. DOI: 10.1109/ICCV.2015.169. [15] WANG J Q, CHEN K, YANG S, et al. Region proposal by guided anchoring[Z]. IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), Long Beach, USA, 2019. DOI: 10.1109/CVPR.2019.00308 [16] LIN T Y,DOLLAR P.GIRSHICK R,et al.Feature pyramid networks for object detection[Z].IEEE Conference on Computer Vision and Pattern Recognition(CVPR),Hawaii,USA,2017.DOI:10.1109/CVPR.2017.106. [17] KENDALL A, GAL Y, CIPOLLA R. Multi-task learning using uncertainty to weigh losses for scene geometry and semantics[Z]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018. DOI: 10.1109/CVPR.2018.00781. [18] PANG J M, CHEN K, SHI J P, et al. Libra R-CNN: Towards balanced learning for object detection[Z]. IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), Long Beach, USA, 2019. DOI: 10.1109/CVPR.2019.00091. ( |