[1] HENRY J, LIVINGSTONE J. Thin-film amorphous silicon position-sensitive detectors[J]. Advanced Materials, 2001, 13(12-13): 1022-1026. [2] QI X L, ZHANG S C. Topological insulators and superconductors[J]. Reviews of Modern Physics, 2011, 83(4): 1057-1110. DOI: 10.1103/RevModPhys.83.1057. [3] CHEN Y L, ANALYTIS J G, CHU J H, et al. Experimental realization of a three-dimensional topological insulator, Bi2Te3[J]. Science, 2009, 325(5937): 178-181. DOI: 10.1126/science.1173034. [4] WANG F, LI L, HUANG W, et al. Submillimeter 2D Bi2Te3 flakes toward high-performance infrared photodetection at optical communication wavelength[J]. Advanced Functional Materials, 2018, 28(33): 1802707. DOI: 10.1002/adfm.201802707. [5] ZHANG X, WANG J, ZHANG S C. Topological insulators for high-performance terahertz to infrared applications[J]. Physical Review B, 2010, 82(24): 245107. DOI: 10.1103/PhysRevB.82.245107. [6] HASAN M Z, KANE C L. Colloquium: Topological insulators[J]. Reviews of Modern Physics, 2010, 82(4): 3045-3067. DOI: 10.1103/RevModPhys.82.3045. [7] XU J P, WANG M X, LIU Z L, et al. Experimental detection of a majorana mode in the core of a magnetic vortex inside a topological insulator-superconductor Bi2Te3/NbSe2 heterostructure[J]. Physical Review Letters, 2015, 114(1): 017001. DOI: 10.1103/PhysRevLett.114.017001. [8] QIAO H, YUAN J, XU Z, et al. Broadband photodetectors based on graphene-Bi2Te3 heterostructure[J]. ACS Nano, 2015, 9(2): 1886-1894. DOI: 10.1021/nn506920z. [9] YAO J, SHAO J, WANG Y, et al. Ultra-broadband and high response of the Bi2Te3-Si heterojunction and its application as a photodetector at room temperature in harsh working environments[J]. Nanoscale, 2015, 7(29): 12535-12541. DOI: 10.1039/C5NR02953H. [10] QIAO S, CHEN M, WANG Y, et al. Ultrabroadband, large sensitivity position sensitivity detector based on a Bi2Te2.7Se0.3/Si heterojunction and its performance improvement by pyro-phototronic effect[J]. Advanced Electronic Materials, 2019, 5(12): 1900786. DOI: 10.1002/aelm.201900786. [11] QIAO S, CHEN J, LIU J, et al. Distance-dependent lateral photovoltaic effect in a-Si:H(p)/a-Si:H(i)/c-Si(n)structure[J]. Applied Surface Science, 2015, 356: 732-736. DOI: 10.1016/j.apsusc.2015.08.144. [12] QIAO S, ZHANG B, FENG K, et al. Large lateral photovoltage observed in MoS2 thickness-modulated ITO/MoS2/p-Si heterojunctions[J]. ACS Applied Materials & Interfaces, 2017, 9(21): 18377- 18387. DOI: 10.1021/acsami.7b04638. [13] CONG R, QIAO S, LIU J, et al. Ultrahigh, ultrafast, and self-powered visible-near-infrared optical position-sensitive detector based on a CVD-prepared vertically standing few-layer MoS2/Si heterojunction[J]. Advanced Science, 2018, 5(2): 1700502. DOI: 10.1002/advs.201700502. [14] YU C Q, WANG H, XIAO S Q, et al. Direct observation of lateral photovoltaic effect in nano-metal-films[J]. Optics Express, 2009, 17(24): 21712-21722. DOI: 10.1364/OE.17.021712. [15] ZHOU P, GAN Z, HUANG X, et al. Nonvolatile and tunable switching of lateral photo-voltage triggered by laser and electric pulse in metal dusted metal-oxide-semiconductor structures[J]. Scientific Reports, 2016, 6(1): 32015. DOI: 10.1038/srep32015. [16] ZHANG B, DU L,WANG H. Bias-assisted improved lateral photovoltaic effect observed in Cu2O nano-films[J]. Optics Express, 2014, 22(2): 1661-1666. DOI: 10.1364/oe.22.001661. [17] FORTUNATO E, LAVAREDA G, MARTINS R, et al. Large-area 1D thin-film position-sensitive detector with high detection resolution[J]. Sensors and Actuators A: Physical, 1995, 51(2): 135-142. DOI: 10.1016/0924-4247(95)01214-1. ( |