[1] JIN L W, ZHONG Z Y, YANG Z, et al. Applications of deep learning for handwritten Chinese character recognition: a review[J]. Acta Automatica Sinica, 2016, 42(8): 1125-1141. DOI:10.16383/j.aas.2016.c150725. [2] 祁俊辉. 基于特征向量和笔顺编码的字形相似算法研究[J]. 重庆邮电大学学报(自然科学版), 2019, 31(6): 885-891. DOI:10.3979/j.issn.1673-825X.2019.06.019. [3] 马海云, 张忠林. 一种多技术融合的古体汉字识别方法研究[J]. 中央民族大学学报(自然科学版), 2018, 27(3):44-47.DOI:10.3969/j.issn.1005-8036.2018.03.008. [4] BAI Z L, HUO Q. A study on the use of 8-directional features for online handwritten Chinese character recognition[C] //Eighth International Conference on Document Analysis and Recognition, IEEE, 2005: 262-266. DOI:10.1109/ICDAR.2005.34. [5] LIN M, SONG R. A stroke-segment-mesh(SSM)glyph description method of Chinese characters[J]. Journal of Computer Research and Development, 2010, 47: 318-327.DOI:10.3724/SP.J.1016.2010.02202. [6] 冉耕, 黄山, 何志辉, 等. 重叠模糊规范化双弹性网格汉字特征提取[J]. 计算机工程与设计, 2016, 37(1): 211-215. DOI:10.16208/j.issn1000-7024.2016.01.040. [7] GE Y, HUO Q, FENG Z D. Offline recognition of handwritten Chinese characters using Gabor features, CDHMM modeling and MCE training[C] //IEEE International Conference on Acoustics Speech and Signal Processing, 2002: 1053-1056. DOI:10.1109/ICASSP.2002.5743976. [8] LI F Y, SHEN Q, LI Y, et al. Handwritten Chinese character recognition using fuzzy image alignment[J]. Soft Computing, 2016, 20(8): 2939-2949. DOI:10.1007/s00500-015-1923-y. [9] MAPARI S, CHAUDHARY N, NAIK S, et al. Usage of fuzzy rule and SOM based model to identify a handwritten chemical symbol or structures[C] //Second IEEE International Conference on Electrical, Computer and Communication Technologies(ICECCT), 2017:1-4. DOI:10.1109/ICECCT.2017.8117842. [10] 章夏芬, 庄越挺, 鲁伟明, 等. 根据形状相似性的书法内容检索[J]. 计算机辅助设计与图形学学报, 2005, 17(11): 2565-2569. DOI:10.3321/j.issn:1003-9775.2005.11.029. [11] ZHANG X F, ZHUANG Y T, WU J Q, et al. Hierarchical approximate matching for retrieval of Chinese historical calligraphy character[J]. Journal of Computer Science and Technology, 2007, 22(4): 633-640. DOI:10.1007/s11390-007-9077-8. [12] 陈颉, 朱福喜. 根据骨架结构相似性的书法内容分层检索[J]. 小型微型计算机系统, 2010, 31(1): 138-142. [13] 郭利敏, 葛亮, 刘悦如. 卷积神经网络在古籍汉字识别中的应用实践[J]. 图书馆论坛, 2019, 39(10): 142-148. DOI:10.3969/j.issn.1002-1167.2019.10.016. [14] XIAO X F, JIN L W, YANG Y F, et al. Building fast and compact convolutional neural networks for offline handwritten Chinese character recognition[J]. Pattern Recognition, 2017, 72: 72-81. DOI:10.1016/j.patcog.2017.06.032. [15] ZHONG Z Y, JIN L W, XIE Z C. High performance offline handwritten Chinese character recognition using GoogLeNet and directional feature maps[C] //13th International Conference on Document Analysis and Recognition(ICDAR), IEEE, 2015: 846-850. DOI:10.1109/ICDAR.2015.7333881. [16] SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C] //IEEE Conference on Computer Vision and Pattern Recognition(CVPR), 2015: 1-9. DOI:10.1109/CVPR.2015.7298594. [17] LIU C L. Normalization-cooperated gradient feature extraction for handwritten character recognition[J]. IEEE transactions on Pattern Analysis and Machine Intelligence, 2007, 29(8): 1465-1469. DOI:10.1109/TPAMI.2007.1090. [18] 张秀玲, 周凯旋, 魏其珺, 等. 多通道交叉融合的深度残差网络脱机手写汉字识别[J]. 小型微型计算机系统, 2019, 40(10): 2232-2235. DOI:10.3969/j.issn.1000-1220.2019.10.039. [19] 陈站, 邱卫根, 张立臣. 基于改进inception的脱机手写汉字识别[J]. 计算机应用研究: 2020, 37(4):1244-1246. DOI:10.19734/j.issn.1001-3695.2018.09.0784. [20] 李国强, 周贺, 马锴, 等. 特征分组提取融合深度网络手写汉字识别[J]. 计算机工程与应用, 2020, 56(12): 163-168. DOI:10.3778/j.issn.1002-8331.1904-0029. [21] CHEN L, WANG S, FAN W, et al. Beyond human recognition: a CNN-based framework for handwritten character recognition[C] //Proceedings of the 3rd IAPR Asian Conference on Pattern Recognition(ACPR), IEEE, 2015: 695-699. DOI:10.1109/ACPR.2015.7486592. [22] 徐清泉. 基于注意力机制的中文识别算法研究[D]. 武汉: 华中科技大学, 2019. DOI:10.27157/d.cnki.ghzku.2019.004112. [23] YANG X, HE D F, ZHOU Z H, et al. Improving offline handwritten Chinese character recognition by iterative refinement[C] //14th IAPR International Conference on Document Analysis and Recognition(ICDAR), 2017: 5-10. DOI:10.1109/ICDAR.2017.11. [24] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL].(2015-04-10)[2021-05-07].https://arxiv.org/abs/1409.1556v6. [25] WEN Y, ZHANG K, LI Z, et al. A discriminative feature learning approach for deep face recognition[C] //Computer Vision-ECCV 2016, 2016: 499-515. DOI:10.1007/978-3-319-46478-7_31. [26] SZEGEDY C, LOFFE S, VANHOUCKE V, et al. Inception-v4, Inception-ResNet and the impact of residual connectionson learning[EB/OL].(2016-08-23)[2021-05-07].https://arxiv.org/abs/1602.07261v2. [27] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C] //IEEE Conference on Computer Vision and Pattern Recognition(CVPR), 2016: 770-778. DOI:10.1109/CVPR.2016.90. [28] WANG T Q, YIN F, LIU C L. Radical-based Chinese character recognition via multi-Labeled learning of deep residualnetworks[C] //2017 14th IAPR International Conference on Document Analysis and Recognition(ICDAR), 2017: 579-584. DOI:10.1109/ICDAR.2017.100. [29] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C] //Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017: 6000-6010. DOI:10.5555/3295222.3295349. [30] ZHU X, CHENG D, ZHANG Z, et al. An empirical study of spatial attention mechanisms in deep networks[C] //2019 IEEE/CVF International Conference on Computer Vision(ICCV), 2019: 6687-6696. DOI:10.1109/ICCV.2019.00679. [31] HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis andMachine Intelligence, 2020, 42(8): 2011-2023. DOI:10.1109/TPAMI.2019.2913372. [32] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[M] //Computer Vision- ECCV2018. Cham: Springer International Publishing, 2018: 3-19. DOI:10.1007/978-3-030-01234-2_1. [33] IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C] //Proceedings of the 32nd International Conference on Machine Learning, 2015: 448-456.DOI:10.5555/3045118.3045167. [34] THEODORIDIS S. Stochastic gradient descent[M] //Machine Learning, Amsterdam: Elsevier, 2015: 161-231. DOI:10.1016/b978-0-12-801522-3.00005-7. [35] KINGMA D, BA J. Adam: a method for stochastic optimization[EB/OL].(2017-01-30)[2021-05-07]. https://arxiv.org/abs/1412.6980v9. [36] LI X Y, SUN X F, MENG Y X, et al. Dice loss for data-imbalanced NLP tasks[EB/OL].(2020-08-29)[2021-05-07]. https://arxiv.org/abs/1911.02855v3. ( |