[1] INOUE K, GOTO T, IIDA M, et al. Aqueous dispersion of hexagonal boron nitride via plasma processing in a hydroquinone solution[J]. Journal of Physics D-Applied Physics, 2020, 53(42): 42LT01. DOI: 10.1088/1361-6463/ab97dd. [2] ZOU Q, ZHANG Z P, LI H F, et al. Synergistic removal of organic pollutant and metal ions in photocatalysis-membrane distillation system[J]. Applied Catalysis B-Environmental, 2020, 264: 118463. DOI: 10.1016/j.apcatb.2019.118463. [3] WU J C, WU K Y, REN C H, et al. Comparison of discharge characteristics and methylene blue degradation through a direct-current excited plasma jet with air and oxygen used as working gases[J]. Plasma Science and Technology, 2020, 22(5): 055505. DOI: 10.1088/2058-6272/ab6c00. [4] CHEN Y, LU X P, LAMAKA S V, et al. Active protection of Mg alloy by composite PEO coating loaded with corrosion inhibitors[J]. Applied Surface Science, 2020, 504: 144462. DOI: 10.1016/j.apsusc.2019.144462. [5] WANG C, CUI H C, ZHANG Z L, et al. Production of long, laminar plasma jets at atmospheric pressure with multiple cathodes[J]. Contributions to Plasma Physics, 2016, 57(2): 58-66. DOI: 10.1002/ctpp.201600073. [6] JIANG N, YANG J L, HE F, et al. Interplay of discharge and gas flow in atmospheric pressure plasma jets[J]. Journal of Applied Physics, 2011, 109(9): 093305. DOI: 10.1063/1.3581067. [7] QAISRANI M H, XIAN Y B, LI C Y, et al. Study on dynamics of the influence exerted by plasma on gas flow field in non-thermal atmospheric pressure plasma jet[J]. Physics of Plasmas, 2016, 23(6): 063523. DOI: 10.1063/1.4954828. [8] YUE Y F, WU F, CHENG H, et al. A donut-shape distribution of OH radicals in atmospheric pressure plasma jets[J]. Journal of Applied Physics, 2017, 121(3): 033302. DOI: 10.1063/1.4973796. [9] JIANG C, LANE J, SONG S T, et al. Single-electrode He microplasma jets driven by nanosecond voltage pulses[J]. Journal of Applied Physics, 2016, 119(8): 083301. DOI: 10.1063/1.4942624. [10] LU X P, JIANG Z H, XIONG Q, et al. An 11 cm long atmospheric pressure cold plasma plume for applications of plasma medicine[J]. Applied Physics Letters, 2008, 92(8): 081502. DOI: 10.1063/1.2883945. [11] LI X C, LI Y, ZHANG P P, et al. Improved performance of a barrier-discharge plasma jet biased by a direct-current voltage[J]. Scientific Reports, 2016, 6: 35653. DOI: 10.1038/srep35653. [12] LI X C, DI C, JIA P Y, et al. Characteristics of a direct current-driven plasma jet operated in open air[J]. Applied Physics Letters, 2013, 103(14): 144107. DOI: 10.1063/1.4824305. [13] LI X C, JIA P Y, YUAN N, et al. One atmospheric pressure plasma jet with two modes at a frequency of several tens kHz[J]. Physics of Plasmas, 2011, 18(4): 043505. DOI: 10.1063/1.3586499. [14] LI H P, NIE Q Y, YANG A, et al. An atmospheric cold plasma jet with a good uniformity, robust stability, and high intensity over a large area[J]. IEEE Transactions on Plasma Science, 2014, 42(10): 2470-2471. DOI: 10.1109/TPS.2014.2322079. [15] KIEFT I E, VAN DER LAAN E P, STOFFELS E. Electrical and optical characterization of the plasma needle[J]. New Journal of Physics, 2004, 6: 149. DOI:10.1088/1367-2630/6/1/149. [16] KIM D B, RHEE J K, GWEON B, et al. Comparative study of atmospheric pressure low and radio frequency microjet plasmas produced in a single electrode configuration[J]. Applied Physics Letters, 2007, 91(15): 151502. DOI: 10.1063/1.2794774. [17] LU X, LAROUSSI M, PUECH V. On atmospheric-pressure non-equilibrium plasma jets and plasma bullets[J]. Plasma Sources Science and Technology, 2012, 21(3): 034005. DOI: 10.1088/0963-0252/21/3/034005. [18] WALSH J L, IZA F, JANSON N B, et al. Three distinct modes in a cold atmospheric pressure plasma jet[J]. Journal of Physics D-Applied Physics, 2010, 43(7): 075201. DOI: 10.1088/0022-3727/43/7/075201. [19] LU X P, LAROUSSI M. Dynamics of an atmospheric pressure plasma plume generated by submicrosecond voltage pulses[J]. Journal of Applied Physics, 2006, 100(6): 063302. DOI: 10.1063/1.2349475. [20] LI X C, LIN X T, WU K Y, et al. Regularly-swelling plumes generated in atmospheric pressure argon plasma jet excited by a biased sinusoidal voltage[J]. Plasma Sources Science and Technology, 2019, 28(5): 055006. DOI: 10.1088/1361-6595/aaffff. [21] LI X C, CHEN J Y, LIN X T, et al. Morphology transition from diffuse to diffuse-and-filamentary for an argon plume with varying sinusoidal frequency or voltage amplitude[J]. Plasma Sources Science and Technology, 2020, 29(6): 065015. DOI: 10.1088/1361-6595/ab6362. [22] ROBERT E, SARRON V, RIES D, et al. Characterization of pulsed atmospheric-pressure plasma streams(PAPS)generated by a plasma gun[J]. Plasma Sources Science and Technology, 2012, 21(3): 034017. DOI: 10.1088/0963-0252/21/3/034017. [23] JIANG C, CHEN M T, GUNDERSEN M A. Polarity-induced asymmetric effects of nanosecond pulsed plasma jets[J]. Journal of Physics D-Applied Physics, 2009, 42(23): 232002. DOI: 10.1088/0022-3727/42/23/232002. [24] XIONG Z, LU X, XIAN Y, et al. On the velocity variation in atmospheric pressure plasma plumes driven by positive and negative pulses[J]. Journal of Applied Physics, 2010, 108(10): 103303. DOI: 10.1063/1.3511448. [25] OH J S, WALSH J L, BRADLEY J W. Plasma bullet current measurements in a free-stream helium capillary jet[J]. Plasma Sources Science and Technology, 2012, 21(3): 034020. DOI: 10.1088/0963-0252/21/3/034020. [26] BUSSIAHN R, KINDEL E, LANGE H, et al. Spatially and temporally resolved measurements of argon metastable atoms in the effluent of a cold atmospheric pressure plasma jet[J]. Journal of Physics D-Applied Physics, 2010, 43(16): 165201. DOI: 10.1088/0022-3727/43/16/165201. [27] KIM S J, YOON S Y, KIM G H. Bullet velocity distribution of a helium atmospheric-pressure plasma jet in various N2/O2 mixed ambient conditions[J]. IEEE Transactions on Plasma Science, 2015, 43(6): 2054-2063. DOI: 10.1109/TPS.2015.2428721. [28] BREDEN D, RAJA L L. Computational study of the interaction of cold atmospheric helium plasma jets with surfaces[J]. Plasma Sources Science and Technology, 2014, 23(6): 065020. DOI: 10.1088/0963-0252/23/6/065020. [29] HOFMANN S, SOBOTA A, BRUGGEMAN P. Transitions between and control of guided and branching streamers in DC nanosecond pulsed excited plasma jets[J]. IEEE Transactions on Plasma Science, 2012, 40(11): 2888-2899. DOI: 10.1109/TPS.2012.2211621. [30] CHEN J, SU Q F, PAN H, et al. Influence of balance gas mixture on decomposition of dimethyl sulfide in a wire-cylinder pulse corona reactor[J]. Chemosphere, 2009, 75(2): 261-265. DOI: 10.1016/j.chemosphere.2008.12.010. [31] LI J, XU Y G, ZHANG T Y, et al. A diffuse plasma jet generated from the preexisting discharge filament at atmospheric pressure[J]. Journal of Applied Physics, 2017, 122(1): 013301. DOI: 10.1063/1.4989975. [32] DONG L F, RAN J X, MAO Z G. Direct measurement of electron density in microdischarge at atmospheric pressure by Stark broadening[J]. Applied Physics Letters, 2005, 86(16): 161501. DOI: 10.1063/1.1906299. [33] LI X C, GENG J L, JIA P Y, et al. Spatial-temporal evolution of self-organized loop-patterns on a water surface and a diffuse discharge in the gap[J]. Physics of Plasmas, 2017, 24(11): 113504. DOI: 10.1063/1.5010209. [34] TEODORESCU M, BAZAVAN M, IONITA E R, et al. Characteristics of a long and stable filamentary argon plasma jet generated in ambient atmosphere[J]. Plasma Sources Science and Technology, 2015, 24(2): 025033. DOI: 10.1088/0963-0252/24/2/025033. [35] KARAKAS E, LAROUSSI M. Experimental studies on the plasma bullet propagation and its inhibition[J]. Journal of Applied Physics, 2010, 108(6): 063305. DOI: 10.1063/1.3483935. ( |