[1] KUCZYN'SKA-KIPPEN N, NAGENGAST B. The impact of the spatial structure of hydromacrophytes on the similarity of rotifera communities(Budzyńskie Lake, Poland)[J]. Hydrobiologia, 2003, 506: 333-338. DOI:10.1023/B: HYDR.0000008542.76373.44. [2] TELESH I V. Plankton of the Baltic estuarine ecosystems with emphasis on Neva Estuary: a review of present knowledge and research perspectives[J]. Mar Pollut Bull, 2004, 49(3): 206-219. DOI:10.1016/j.marpolbul.2004.02.009. [3] LEONI B. Zooplankton predators and prey: body size and stable isotope to investigate the pelagic food web in a deep lake(Lake Iseo, Northern Italy)[J]. J Limnol, 2017, 76(1): 85-93. DOI:10.4081/jlimnol.2016.1490. [4] LIRA A, ANGELINI R, LE LOC'H F, et al. Trophic flow structure of a neotropical estuary in northeastern Brazil and the comparison of ecosystem model indicators of estuaries[J]. J Mar Syst, 2018, 182: 31-45. DOI:10.1016/j.jmarsys.2018.02.007. [5] 陈非洲.关于淡水浮游动物和原生动物分开研究的建议[J].湖泊科学, 2016, 28(3): 691. DOI:10.18307/2016.0327. [6] GOMES L F, PEREIRA H R, GOMES A C A M, et al. Zooplankton functional-approach studies in continental aquatic environments: a systematic review[J]. Aquat Ecol, 2019, 53(2): 191-203. DOI:10.1007/s10452-019-09682-8. [7] VANDROMME P, STEMMANN L, GARCÌA-COMAS C, et al. Assessing biases in computing size spectra of automatically classified zooplankton from imaging systems: a case study with the ZooScan integrated system[J]. Methods Oceanogr, 2012, 1/2: 3-21. DOI:10.1016/j.mio.2012.06.001. [8] MOLINERO J C, IBANEZ F, SOUISSI S, et al. Climate control on the long-term anomalous changes of zooplankton communities in the Northwestern Mediterranean[J]. Glob Chang Biol, 2008, 14(1): 11-26. DOI:10.1111/j.1365-2486.2007.01469.x. [9] DE PUELLES M L F, MOLINERO J C. Increasing zooplankton variance in the late 1990s unveils hydroclimate modifications in the Balearic Sea, Western Mediterranean[J]. Mar Environ Res, 2013, 86: 76-80. DOI:10.1016/j.marenvres.2012.12.011. [10] ANDERSON T R. Plankton functional type modelling: running before we can walk?[J]. J Plankton Res, 2005, 27(11): 1073-1081. DOI:10.1093/plankt/fbi076. [11] FALKOWSKI P G, BARBER R T, SMETACEK V. Biogeochemical controls and feedbacks on ocean primary production[J]. Science, 1998, 281(5374): 200-206. DOI:10.1126/science.281.5374.200. [12] QUÉRÉ C L, HARRISON S P, COLIN P I, et al. Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models[J]. Glob Chang Biol, 2005, 11(11): 2016-2040. DOI:10.1111/j.1365-2486.2005.1004.x. [13] WAN MAZNAH W O, INTAN S, SHARIFAH R, et al. Lentic and lotic assemblages of zooplankton in a tropical reservoir, and their association with water quality conditions[J]. Int J Environ Sci Technol, 2018, 15(3): 533-542. DOI:10.1007/s13762-017-1412-1. [14] TOUSSAINT A, CHARPIN N, BROSSE S, et al. Global functional diversity of freshwater fish is concentrated in the Neotropics while functional vulnerability is widespread[J]. Sci Rep, 2016, 6: 22125. DOI:10.1038/srep22125. [15] REYNOLDS C S, ELLIOTT J A, FRASSL M A. Predictive utility of trait-separated phytoplankton groups: a robust approach to modeling population dynamics[J]. J Gt Lakes Res, 2014, 40: 143-150. DOI:10.1016/j.jglr.2014.02.005. [16] WEIHER E, VAN DER WERF A, THOMPSON K, et al. Challenging Theophrastus: a common core list of plant traits for functional ecology[J]. J Veg Sci, 1999, 10(5): 609-620. DOI:10.2307/3237076. [17] WINEMILLER K O, FITZGERALD D B, BOWER L M, et al. Functional traits, convergent evolution, and periodic tables of niches[J]. Ecol Lett, 2015, 18(8): 737-751. DOI:10.1111/ele.12462. [18] SANTOS J B O, SILVA L H S, BRANCO C W C, et al. The roles of environmental conditions and geographical distances on the species turnover of the whole phytoplankton and zooplankton communities and their subsets in tropical reservoirs[J]. Hydrobiologia, 2016, 764(1): 171-186. DOI:10.1007/s10750-015-2296-z. [19] PORCEL S, CHAPARRO G, MARINONE M C, et al. The role of environmental, geographical, morphometric and spatial variables on plankton communities in lakes of the arid Patagonian plateaus[J]. J Plankton Res, 2020, 42(2): 173-187. DOI:10.1093/plankt/fbaa004. [20] FINSTAD A G, NILSEN E B, HENDRICHSEN D K, et al. Catchment vegetation and temperature mediating trophic interactions and production in plankton communities[J]. PLoS One, 2017, 12(4): e0174904. DOI:10.1371/journal.pone.0174904. [21] OERTLI B, PARRIS K M. Review: Toward management of urban ponds for freshwater biodiversity[J]. Ecosphere, 2019, 10(7): e02810. DOI:10.1002/ecs2.2810. [22] JONIAK T, KUCZYN'SKA-KIPPEN N, GABKA M. Effect of agricultural landscape characteristics on the hydrobiota structure in small water bodies[J]. Hydrobiologia, 2017, 793(1): 121-133. DOI:10.1007/s10750-016-2913-5. [23] NEWMAN S. Wetland ecology: principles and conservation, 2nd edition[J]. J Environ Qual, 2011, 40(4): 1345. DOI:10.2134/jeq2011.0005br. [24] YANG W J, YOU Q H, FANG N, et al. Assessment of wetland health status of Poyang Lake using vegetation-based indices of biotic integrity[J]. Ecol Indic, 2018, 90: 79-89. DOI:10.1016/j.ecolind.2017.12.056. [25] 王维晴,周立志,陈薇,等.长江下游升金湖湿地保护有效性评价(1989—2019年)[J].湖泊科学, 2021, 33(3): 905-921. DOI:10.18307/2021.0324. [26] 章宗涉,黄祥飞.淡水浮游生物研究方法[M].北京:科学出版社, 1991. [27] 孔祥虹,肖兰兰,苏豪杰,等.长江下游湖泊水生植物现状及与水环境因子的关系[J].湖泊科学, 2015, 27(3): 385-391. DOI:10.18307/2015.0303. [28] R CORE TEAM. R: A language and environment for statistical computing. 2020[Z/OL].[2021-02-28]. http://www. r-project. org, 2020. [29] OKSANEN J, BLANCHET G, FRIENDLY M, et al.vegan: Community Ecology Package. R package version 2.5-7. 2020[Z/OL].[2021-02-25].https://CRAN.R-project.org/package=vegan. [30] SANCHEZ G,TRINCHERA L, RUSSOLILLO G. plspm: Tools for Partial Least Squares Path Modeling(PLS-PM). R package version 0.4.9.2017[Z/OL].[2021-02-20]. https://CRAN.R-project.org/package=plspm. [31] 安睿,王凤友,于洪贤,等.三环泡湿地浮游动物功能群季节变化及其影响因子[J].生态学报, 2017, 37(6): 1851-1860. DOI:10.5846/stxb201510292184. [32] LITCHMAN E, OHMAN M D, KIØRBOE T. Trait-based approaches to zooplankton communities[J]. J Plankton Res, 2013, 35(3): 473-484. DOI:10.1093/plankt/fbt019. [33] RIZO E Z C, GU Y L, PAPA R D S, et al. Identifying functional groups and ecological roles of tropical and subtropical freshwater Cladocera in Asia[J]. Hydrobiologia, 2017, 799(1): 83-99. DOI:10.1007/s10750-017-3199-y. [34] ORCUTT J D, PACE M L. Seasonal dynamics of rotifer and crustacean zooplankton populations in a eutrophic, monomictic lake with a note on rotifer sampling techniques[J]. Hydrobiologia, 1984, 119(1): 73-80. DOI:10.1007/BF00016866. [35] OBERTEGGER U, FLAIM G, BRAIONI M G, et al. Water residence time as a driving force of zooplankton structure and succession[J]. Aquat Sci, 2007, 69(4): 575-583. DOI:10.1007/s00027-007-0924-z. [36] HOLST H, ZIMMERMANN H, KAUSCH H, et al. Temporal and spatial dynamics of planktonic rotifers in the Elbe estuary during spring[J]. Estuar Coast Shelf Sci, 1998, 47(3): 261-273. DOI:10.1006/ecss.1998.0364. [37] 王文侠,陈非洲,谷孝鸿.南京市5座中型水库浮游动物群落结构及其与环境因子的关系[J].湖泊科学, 2017, 29(1): 216-223. DOI:10.18307/2017.0123. [38] MORSE R E, FRIEDLAND K D, TOMMASI D, et al. Distinct zooplankton regime shift patterns across ecoregions of the US Northeast continental shelf Large Marine Ecosystem[J]. J Mar Syst, 2017, 165: 77-91. DOI:10.1016/j.jmarsys.2016.09.011. [39] 杨宇峰,王庆,陈菊芳,等.河口浮游动物生态学研究进展[J].生态学报, 2006, 26(2): 576-585. DOI:1000-0933(2006)02-0576-10. [40] 姜会超,陈海刚,宋秀凯,等.莱州湾金城海域浮游动物群落结构及与环境因子的关系[J].生态学报, 2015, 35(22): 7308-7319. DOI:10.5846/stxb201403260565. [41] 林青,由文辉,徐凤洁,等.滴水湖浮游动物群落结构及其与环境因子的关系[J]. 生态学报, 2014, 34(23): 6918-6929. DOI:10.5846/stxb201303030360. [42] 袁琳娜,杨常亮,李晓铭,等.高原深水湖泊水温日成层对溶解氧、酸碱度、总磷浓度和藻类密度的影响:以云南阳宗海为例[J].湖泊科学, 2014, 26(1): 161-168. DOI:10.18307/2014.0120. [43] VEERENDRA D N, THIRUMALA S, MANJUNATHA H, et al. Zooplankton diversity and its relationship with physico-chemical parameters in mani reservoir of western ghats, region, hosanagar taluk, shivamoga district Karnataka, India[J]. Juee, 2012, 6(2): 74-77. DOI:10.4090/juee.2012.v6n2.074077. [44] 吴利,李源玲,陈延松.淮河干流浮游动物群落结构特征[J].湖泊科学, 2015, 27(5): 932-940. DOI:10.18307/2015.0521. ( |