[1] SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: A Cancer Journal for Clinicians, 2021,71(3):209-249. DOI:10.3322/caac.21660. [2] 赵胜兵,王树玲,方军,等.国内外结直肠癌早诊早治现状[J].中华消化内镜杂志, 2019(2): 143-147. DOI:10.3760/cma.j.issn.1007-5232.2019.02.016 [3] ZAUBER A G, WINAWER S J, O'BRIEN M J, et al. Colonoscopic polypectomy and long-term prevention of colorectal-cancer deaths[J]. N Engl J Med, 2012, 212(8): 408-408. DOI:10.1016/j.rce.2012.04.012. [4] WINAWER S, FLETCHER R, REX D, et al. Colorectal cancer screening and surveillance: Clinical guidelines and rationale -Update based on new evidence[J]. Gastroenterology, 2003, 124(2): 544-560. DOI:10.1053/gast.2003.50044. [5] ANDERSON J C, BUTTERLY L F. Colonoscopy: Quality indicators[J]. Clinical and Translational Gastroenterology, 2015, 6(2):77. DOI:10.1038/ctg.2015.5. [6] MORGAN M B, MATES J L. Applications of artificial intelligence in breast imaging[J]. Radiologic Clinics of North America, 2021, 59(1): 139-148. DOI:10.1016/j.rcl.2020.08.007. [7] ABDELHAFIZ D, NABAVI S, AMMAR R, et al. Convolutional neural network for automated mass segmentation in mammography[J]. BMC bioinformatics,2020,21(1):1-19. DOI:10.1109/iccabs.2018.8542071. [8] PEREIRA T, FREITAS C, COSTA J L, et al. Comprehensive perspective for lung cancer characterisation based on I solutions using CT images[J]. Journal of Clinical Medicine, 2020, 10(1): 118. DOI:10.3390/jcm10010118. [9] CHO J, KIM J, LEE K J, et al. Incidence lung cancer after a ngative CT screening in the national lung screening trial: Deep learning-based detection of missed lung cancers[J]. Journal of Clinical Medicine, 2020, 9(12): 3908. DOI:10.3390/jcm9123908. [10] TONOZUKA R, MUKAI S, ITOI T. The role of artificial intelligence in endoscopic ultrasound for pancreatic disorders[J]. Diagnostics, 2020, 11(1): 18. DOI:10.3390/diagnostics11010018. [11] KARKANIS S A, IAKOVIDIS D K, MAROULIS D E, et al. Computer-aided tumor detection in endoscopic video using color wavelet features[J]. IEEE Transactions on Information Technology in Biomedicine, 2003, 7(3): 141-152. DOI:10.1109/TITB.2003.813794. [12] TIAN Y. Artificial intelligence image recognition methed based on convolutional neural network algorithm[J].IEEE Access,2020,8:125731-125744.DOI:10.1109/ACCESS.2020.3006097. [13] QADIR H A, BALASINGHAM I, SOLHUSVIK J, et al. Improving automatic polyp detection using cNN by exploiting temporal dependency in colonoscopy video[J]. IEEE Journal of Biomedical and Health Informatics, 2020, 24(1): 180-193. DOI:10.1109/JBHI.2019.2907434. [14] ZHANG R, ZHENG Y, MAK T W C, et al. Automatic detection and classification of colorectal polyps by transferring Low-Level CNN features from nonmedical domain[J]. IEEE Journal of Biomedical and Health Informatics, 2017, 21(1): 41-47. DOI:10.1109/JBHI.2016.2635662. [15] MA Y, CHEN X, SUN B. Polyp detection in colonoscopy videos by bootstrapping via temporal consistency[C] //Proceedings -International Symposium on Biomedical Imaging, 2020, 1360-1363. DOI:10.1109/ISBI45749.2020.9098663. [16] 张文明,姚振飞,高雅昆,等.一种平衡准确性以及高效性的显著性目标检测深度卷积网络模型[J].电子与信息学报, 2020, 42(5): 1201-1208. DOI:10.11999/JEIT190229. [17] HE K, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[C] //Proceedings of the IEEE International Conference on Computer Vision, 2017: 2980-2988. DOI:10.1109/ICCV.2017.322. [18] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. DOI:10.1109/TPAMI.2016.2577031. [19] LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector[C] //European Confrence on Cormputer Vision,Springer,Cham, 2016, 9905 LNCS: 21-37. DOI:10.1007/978-3-319-46448-0_2. [20] NEUBECK A, VAN GOOL L. Efficient non-maximum suppression[C] //Proceedings International Conference on Pattern Recognition, 2006, 3: 850-855. DOI:10.1109/ICPR.2006.479. [21] LIU Y, LU B, PENG J, et al. Research on the Use of YOLOv5 object detection algorithm in mask wearing recognition[J]. World Scientific Research Journal, 2020, 6(11): 276-284. DOI: 10.6911/WSRJ.202011_6(11).0038. [22] ZHANG X, DONGX, WEI Q, et al.Real-time object detection algorithm base on improved YOLO v3[J].Journal of Electronie Imaging, 2019, 28(5): 1-12. DOI:10.1117/1.JEI.28.5.053022. [23] HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023. DOI:10.1109/TPAMI.2019.2913372. [24] WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C] //Lecture Notes in Computer Science(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2018, 11211 LNCS: 3-19. DOI:10.1007/978-3-030-01234-2_1. [25] 陈勇,刘曦,刘焕淋.基于特征通道和空间联合注意机制的遮挡行人检测方法[J].电子与信息学报, 2020, 42(6): 1486-1493. DOI:10.11999/JEIT190606. [26] REZATOFIGHI H, TSOI N, GWAK J, et al. Generalized intersection over union: A metric and a loss for bounding box regression[C] //Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2019: 658-666. DOI:10.1109/CVPR.2019.00075. [27] BA J L KINGMA D P. Adam: A methed for stochastic optimization[C] //3 rd International confrence on learning Representation, 2015:1-15. DOI: 10.48550/arXiv. 1412.6980. ( |