[1] ZENG H H, LI X Q, HAO W L, et al. Determination of phthalate esters in airborne particulates by heterogeneous photo-Fenton catalyzed aromatic hydroxylation fluorimetry[J]. Journal of Hazardous Materials, 2017, 324(Pt B): 250-257. DOI:10.1016/j.jhazmat.2016.10.055. [2] XU Y, LIU X, ZHAO J, et al. An efficient phthalate ester-degrading Bacillus subtilis:Degradation kinetics, metabolic pathway, and catalytic mechanism of the key enzyme[J]. Environmental Pollution, 2021, 273: 116461. DOI:10.1016/j.envpol.2021.116461. [3] DU H, HU R W, ZHAO H M, et al. Mechanistic insight into esterase-catalyzed hydrolysis of phthalate esters(PAEs)based on integrated multi-spectroscopic analyses and docking simulation[J]. Journal of Hazardous Materials, 2021, 408: 124901. DOI:10.1016/j.jhazmat.2020.124901. [4] YANG Q, ZHAI Y, XU T, et al. Facile fabrication of Sc-BiOBr photocatalyst immobilized on palm bark with enhanced visible light photocatalytic performance for estradiol degradation[J]. Journal of Physics and Chemistry of Solids, 2019, 130:127-135. DOI:10.1016/j.jpcs.2019.02.028. [5] AGHDAM S M, HAGHIGHI M, ALLAHYARI S, et al. Precipitation dispersion of various ratios of BiOI/BiOCl nanocomposite over g-C3N4 for promoted visible light nanophotocatalyst used in removal of acid orange 7 from water[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2017, 338: 201-212. DOI:10.1016/j.jphotochem.2017.02.013. [6] FENG Z, ZENG L, ZHANG Q L, et al. In situ preparation of g-C3N4/Bi4O5I2 complex and its elevated photoactivity in Methyl Orange degradation under visible light[J]. Journal of Environmental Sciences(China), 2020, 87:149. DOI:10.1016/j.jes.2019.05.032. [7] JIANG X D, LAI S F, XU W C, et al. Novel ternary BiOI/g-C3N4/CeO2 catalysts for enhanced photocatalytic degradation of tetracycline under visible-light radiation via double charge transfer process[J]. Journal of Alloys and Compounds, 2019, 809: 151804. DOI:10.1016/j.jallcom.2019.151804. [8] HUANG H, LIU C Y, OU H L, et al. Self-sacrifice transformation for fabrication of type-Ⅰ and type-Ⅱ heterojunctions in hierarchical BixOyIz/g-C3N4 for efficient visible-light photocatalysis[J]. Applied Surface Science, 2019, 470: 1101-1110. DOI:10.1016/j.apsusc.2018.11.193. [9] TIAN N, HUANG H W, WANG S B, et al. Facet-charge-induced coupling dependent interfacial photocharge separation:A case of BiOI/g-C3N4 p-n junction[J]. Applied Catalysis B:Environmental, 2020, 267: 118697. DOI:10.1016/j.apcatb.2020.118697. [10] JIANG D, CHEN L, ZHU J, et al. Novel p-n heterojunction photocatalyst constructed by porous graphite-like C3N4 and nanostructured BiOI:facile synthesis and enhanced photocatalytic activity[J]. Dalton Transactions, 2013, 42(44): 15726-15734. DOI:10.1039/C3DT52008K. [11] TIAN Y L, CHANG B B, LU J L, et al. Hydrothermal synthesis of graphitic carbon nitride-Bi2WO6 Heterojunctions with enhanced visible light photocatalytic activities[J]. Applied Materials & Interfaces, 2013, 5(15): 7079-7085. DOI:10.1021/am4013819. [12] FENG Z, ZENG L, ZHANG Q, et al. In situ preparation of g-C3N4/Bi4O5I2 complex and its elevated photoactivity in Methyl Orange degradation under visible light[J]. Journal of Environmental Sciences, 2020, 87. DOI:10.1016/j.jes.2019.05.032. [13] SAKTHIVEL T, HUANG X, Wu Y, et al. Recent progress in black phosphorus nanostructures as environmental photocatalysts[J]. Chemical Engineering Journal(Lausanne, Switzerland:1996), 2020, 379: 122297. DOI:10.1016/j.cej.2019.122297. [14] TIAN N, HUANG H W, WANG S B, et al. Facet-charge-induced coupling dependent interfacial photocharge separation:A case of BiOI/g-C3N4 p-n junction[J]. Applied Catalysis B:Environmental, 2020, 267: 118697. DOI:10.1016/j.apcatb.2020.118697. [15] TIAN N, ZHANG Y, LIU C, et al. G-C3N4/Bi4O5I22D-2D heterojunctional nanosheets with enhanced visible-light photocatalytic activity[J]. RSC Advances, 2016, 6(13): 10895-10903. DOI:10.1039/C5RA24672E. [16] ZHAO Q, ZHAO H, QUAN X, et al. Photochemical transformation of 2, 2', 4, 4'-tetrabromodiphenyl ether(BDE-47)in surface coastal waters: Effects of chloride and ferric ions[J]. Marine Pollution Bulletin, 2014, 86(1-2): 76-83. DOI:10.1016/j.marpolbul.2014.07.040. [17] PERSSON I. Hydrated metal ions in aqueous solution:How regular are their structures?[J]. Pure & Applied Chemistry, 2010, 82(10):1901-1917. DOI:10.1351/PAC-CON-09-10-22. [18] LI S, LAI C, LI C, et al. Enhanced photocatalytic degradation of dimethyl phthalate by magnetic dual Z-scheme iron oxide/ mpg-C3N4/ BiOBr/ polythiophene heterostructure photocatalyst under visible light[J]. Journal of Molecular Liquids, 2021,324:116947. DOI:10.1016/j.molliq.2021.116947. [19] 邹亚文,张泽明,张洪海,等.水体系中3种常见邻苯二甲酸酯的光化学降解研究[J].环境科学学报, 2018,38(8): 3012-3020. DOI:10.13671/j.hjkxxb.2018.0057. [20] 潘水红.水环境中邻苯二甲酸酯光降解机理的研究[D].温州:温州大学, 2018. [21] XU X R, LI S X, LI X Y, et al. Degradation of n-butyl benzyl phthalate using TiO2/UV[J]. Journal of Hazardous Materials, 2009, 164(2-3): 527-532. DOI:10.1016/j.jhazmat.2008.08.027. [22] 梁大鹏,聂林春,方媛萍,等.水体中邻苯二甲酸酯的光催化降解[J].吉林大学学报(理学版), 2020, 58(2): 434-440. DOI:10.13413/j.cnki.jdxblxb.2019294. ( |