[1] 谢菲,夏洪山.石英纤维复合材料作为高频透波雷达天线罩的研究[J].四川兵工学报, 2015, 36(3): 147-150. DOI: 10.11809/scbgxb2015.03.038. [2] ZHANG J, LI W, CUI H L, et al. Nondestructive evaluation of carbon fiber reinforced polymer composites using reflective terahertz imaging[J]. Sensors, 2016, 16(6): 875. DOI: 10.3390/s16060875. [3] 许景周,张希成.太赫兹科学技术和应用[M].北京:北京大学出版社, 2007. [4] 梁达川,关松.太赫兹波无损检测技术及其应用[J].光电技术应用, 2018, 33(6): 1-8. DOI: 10.3969/j.issn.1673-1255.2018.06.001. [5] ZANDONELLA C. Terahertz imaging: T-ray specs[J]. Nature, 2003, 424(6950): 721-722. DOI: 10.1038/424721a. [6] STOIK C, BOHN M, BLACKSHIRE J. Nondestructive evaluation of aircraft composites using reflective terahertz time domain spectroscopy[J]. NDT&E INT, 2010, 43(2): 106-115. DOI: 10.1016/j.ndteint.2009.09.005. [7] OSPALD F, ZOUAGHI W, BEIGANG R, et al. Aeronautics composite material inspection with a terahertz time-domain spectroscopy system[J]. Optical Engineering, 2013, 53(3): 031208. DOI: 10.1117/1.OE.53.3.031208. [8] 廖晓玲.太赫兹光谱技术在复合材料无损检测中的应用研究[D].杭州:中国计量学院, 2015. [9] 郭小弟,王强,谷小红,等.基于太赫兹时域光谱的玻璃纤维缺陷深度检测及数据分析[J].红外技术, 2016, 38(7): 602-606. [10] 张瑾.纤维增强复合材料的太赫兹无损检测研究[D].长春:吉林大学, 2016. [11] 邢砾云.航空泡沫芯材及夹层结构的太赫兹无损检测研究[D].长春:吉林大学, 2016. [12] ZHANG D D, REN J J, LI L J, et al. Terahertz non-destructive testing technology for glass fiber honeycomb composites[J]. ACTA PHOTONICA SINIC, 2019, 48(2): 212002. DOI: 10.3788/gzxb20194802.0212002. [13] IBRAHIM M E, HEADLAND D, WITHAYACHUMNANKUL W, et al. Nondestructive testing of defects in polymer-matrix composite materials for marine applications using terahertz waves[J]. J Nondestruct Eval, 2021, 40(2): 1-11. DOI: 10.1007/s10921-021-00767-9. [14] LI T, HE J N, ZHANG L. et al. Fast quantitative analysis of hidden dangerous substances in mail based on specific interval PLS[J]. J Infrared Millim Terahertz Waves, 2021,42: 572-587. DOI: 10.1007/s10762-021-00790-x. [15] WANG Q, LIU Q H, XIA R C, et al. Automatic defect prediction in glass fiber reinforced polymer based on THz-TDS signal analysis with neural networks[J]. Infrared Phys Techn, 2021, 115: 103673. DOI: 10.1016/j.infrared.2021.103673. [16] 郑莉,刘闯,任姣姣,等.基于LDA-CPSO-SVM优化的多层胶接结构脱粘缺陷识别方法[J].光子学报, 2021, 50(12): 114-121. DOI: 10.3788/gzxb20215012.1212004. [17] LI T, XU Y Y, LUO J L, et al. A method of amino acid terahertz spectrum recognition based on the convolutional neural network and bidirectional gated recurrent network model[J]. Sci Program, 2021, 2021(10): 1-7. DOI: 10.1155/2021/2097257. [18] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6), 84-90. DOI: 10.1145/3065386. [19] MIKOLOV T, DEORAS A, STEFAN K, et al. Empirical evaluation and combination of advanced language modeling techniques[C] //Interspeech, Conference of the International Speech Communication Association, 2012: 605-608. DOI: 10.1.1.226.3005. [20] GUO X M, WU F, TANG X Y. Fingerprint pattern identification and classification[C] //14th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery(ICNC-FSKD)2018, Huangshan, China, IEEE, 2018: 1045-1050. DOI: 10.1109/FSKD.2018.8687199. [21] WANG Q, LIU Q H, XIA R C, et al. Defect depth determination in laser infrared thermography based on LSTM-RNN[J]. IEEE Access, 2020, 8: 153385-153393. DOI: 10.1109/ACCESS.2020.3018116. [22] MUNIR N, KIM H J, PARK J, et al. Convolutional neural network for ultrasonic weldment flaw classification in noisy conditions[J]. Ultrasonics,2019, 94: 74-81. DOI: 10.1016/j.ultras.2018.12.001. [23] DEMACHI K, HORI T, PERRIN S. Crack depth estimation of non-magnetic material by convolutional neural network analysis of eddy current testing signal[J]. J Nucl Sci Technol, 2020, 57(4): 401-407. DOI: 10.1080/00223131.2019.1691076. [24] TOWNSEND J T. Theoretical analysis of an alphabet confusion matrix[J]. Atten Percept Psychophys, 1971, 9(1): 40-50. DOI: 10.3758/BF03213026. ( |