[1] JIANG L R, HU Q, CHEN T H, et al. Highly sensitive and rapid responsive fluorescence probe for determination of formaldehyde in seafood and in vivo imaging application[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2020, 228: 117789. DOI: 10.1016/j.saa.2019.117789. [2] ALLOUCH A, GUGLIELMINO M, BERNHARDT P, et al. Transportable, fast and high sensitive nearreal-time analyzers: Formaldehyde detection[J]. Sens Actuat B Chem, 2013, 181: 551-558. DOI: 10.1016/j.snb.2013.02.043. [3] LIU C C, WANG Y N, FU L M, et al. Micro-distillation system for formaldehyde concentration det-ection[J]. Chem Eng J, 2016, 304: 419-425. DOI: 10.1016/j.cej.2016.06.114. [4] SANCHEZ J, SANCHEZ-SANCHEZ A, IZQUIERDO M T, et al. Nanostructured tin oxide materials for the sub-ppm detection of indoor formaldehyde pollution[J]. Talanta, 2020, 208: 120396. DOI: 10.1016/j.talanta.2019.120396. [5] XI H T, CHEN X G, CAO Y, et al. Electrochemical determination of formaldehyde via reduced Au-NPs@PPY composites modified electrode[J]. Microchem J, 2020, 156: 104846. DOI: 10.1016/j.microc.2020.104846. [6] 李开森,刘峰,胡仲禹,等.吸收液采样-高效液相色谱法测定室内空气中甲醛的含量[J].理化检验-化学分册, 2023, 59(12): 1466-1468. DOI: 10.11973/lhjy-hx202312019. [7] 袁彩霞,钱滢文,柴宗龙,等.气相色谱法同时测定啤酒中的甲醛和乙醇[J].酿酒科技, 2018(5): 117-121. DOI: 10.13746/j.njkj.2017348. [8] 王亚云,乔振杰,杨启鹏.纺织品中甲醛含量的气相色谱-质谱法测定[J].印染, 2022, 48(12): 66-69. DOI: 10.3321/j.issn.1000-4017.2022.12.016. [9] 李怀旻.乙酰丙酮分光光度法测定水中甲醛的方法改进及影响因素分析[J].化学工程与装备, 2019(8):274-276. DOI: 10.19566/j.cnki.cn35-1285/tq.2019.08.113. [10] 邓加元.手机内置摄像头比色法监测室内甲醛[J].绿色科技, 2024, 26(4): 204-208. DOI: 10.16663/j.cnki.lskj.2024.04.049. [11] CAO Y P, TENG Z D, ZHANG J, et al. A fluorescent probe for distinguish detection of formaldeh-yde and acetaldehyde[J]. Sen Actuat B Chem, 2020, 320: 128354. DOI: 10.1016/j.snb.2020.128354. [12] LIU C X, SHI C X, LI H X, et al. Nanomolar fluorescent quantitative detection of formaldehyde with a 8-hydroxyquinoline derivative in aqueous solution and electrospun nanofibers[J]. Sen Actuat B Chem, 2015, 219: 185-191. DOI: 10.1016/j.snb.2015.04.131. [13] CAO Y J, WU W, WEI J L, et al. Encapsulating quantum dots with amino functionalized mesoporo-us hollow silica microspheres for the sensitive analysis of formaldehyde in seafood[J]. Anal Methods, 2016, 8(20): 4101-4107. DOI: 10.1039/c6ay00138f. [14] WANG H, WEI J, ZHANG C H, et al. Red carbon dots as label-free two-photon fluorescent nanopr-obes for imaging of formaldehyde in living cells and zebrafishes[J]. Chin Chemical Lett, 2020,31(3): 759-763. DOI: 10.1016/j.cclet.2019.09.021. [15] CHEN B B, LIU M L, LI C M, et al. Fluorescent carbon dots functionalization[J]. Adv Colloid Interface Sci, 2019, 270: 165-190. DOI: 10.1016/j.cis.2019.06.008. [16] CHU S Y, WANG H Q, LING X, et al. A portable smartphone platform using a ratiometric fluores-cent paper strip for visual quantitative sensing[J]. ACS Appl Mater Interfaces, 2020, 12(11):12962-12971. DOI: 10.1021/acsami.9b20458. [17] ZHANG X Q, CHEN C Y, PENG D P, et al. pH-Responsive carbon dots with red emission for real-time and visual detection of amines[J]. J Mater Chem C, 2020, 8(33): 11563-11571.DOI: 10.1039/d0tc02597f. [18] WANG L, MA Y, LIN W. Construction of a turn-on fluorescent probe for detecting formaldehyde in biological systems and real food samples[J]. Food Chem, 2024, 450: 139315. DOI: 10.1016/j.fo-odchem.2024.139315. [19] DING N, LI Z, HAO Y T, et al. A new amine moiety-based near-infrared fluorescence probe for de-tection of formaldehyde in real food samples and mice[J]. Food Chem, 2022, 384: 132426. DOI:10.1016/j.foodchem.2022.132426. [20] LI Y, HU M Y, LIU K, et al. Lignin derived multicolor carbon dots for visual detection of formald-ehyde[J]. Ind Crops Prod, 2023, 192: 116006. DOI: 10.1016/j.indcrop.2022.116006. [21] ATCHUDAN R, EDISON T N J I, PERUMAL S, et al. Betel-derived nitrogen-doped multicolor carbon dots for environmental and biological applications[J]. J Mol Liq, 2019, 296: 111817. DOI: 10.1016/j.molliq.2019.111817. [22] QI T, XU M Y, YAO Y, et al. Gold nanoprism/Tollens’ reagent complex as plasmonic sensor in hea-dspace single-drop microextraction for colorimetric detection of formaldehyde in food samples using smartphone readout[J]. Talanta, 2020, 220: 121388. DOI: 10.1016/j.talanta.2020.121388. [23] CHE H C, LI Y, TIAN X K, et al. A versatile logic detector and fluorescent film based on Eu-bas-ed MOF for swift detection of formaldehyde in solutions and gas phase[J]. J Hazard Mater, 2021, 410: 124624. DOI: 10.1016/j.jhazmat.2020.124624. [24] HOU J, LIU X, ZHAO D, et al. Efficient detection of formaldehyde by fluorescence switching sens-or based on GSH-CdTe[J]. Microchem J, 2023, 190: 108647. DOI: 10.1016/j.microc.2023.108647. [25] BAI W, LI C, ZHAO Z, et al. Eu3+ doped ethylenediamine functionalized UiO-66 probe for fluoresc-ence sensing of formaldehyde[J]. Spectrochim Acta Part A: Mol Biomol Spectrosc, 2024, 310: 123937. DOI: 10.1016/j.saa.2024.123937. [26] ARSAWISET S, TEEPOO S. Ready-to-use, functionalized paper test strip used with a smartphone for the simultaneous on-site detection of free chlorine, hydrogen sulfide and formaldehyde in wastewater[J]. Anal Chim Acta, 2020, 1118: 63-72. DOI: 10.1016/j.aca.2020.04.041. [27] PERWIN A, MAZUMDAR N. Exploring the synthesis of poly(azomethine-ester)through oxidative polycondensation of salicylaldehyde schiff bases[J]. J Polym Res, 2024, 31:214. DOI: 10.1007/s10965-024-04070-9. [28] MUSHTAQ I, AHMAD M, SALEEM M, et al. Pharmaceutical significance of schiff bases: an overview[J]. Future J Pharm Sci, 2024, 10(1):16. DOI: 10.1186/s43094-024-00594-5. [29] KADU N S, MASAND V H. A capstone review on synthetic methods and applications of schiffs b-ases[J]. Int J Res Appl Sci Eng Technol, 2022, 10(8):352-359. DOI: 10.22214/ijraset.2022.46194. [30] CAO L, ZAN M H, CHEN F M, et al. Formation mechanism of carbon dots: From chemical struct-ures to fluorescent behaviors[J]. Carbon, 2022, 194: 42-51. DOI: 10.1016/j.carbon.2022.03.058. ( |