河北大学学报(自然科学版) ›› 2025, Vol. 45 ›› Issue (1): 104-112.DOI: 10.3969/j.issn.1000-1565.2025.01.011

• • 上一篇    

复合材料模压成型工艺参数优化方法

杨泽青1,杜竞旋1,胡宁1,张延星2,金一3   

  • 收稿日期:2024-08-06 出版日期:2025-01-25 发布日期:2025-02-25
  • 通讯作者: 张延星(1986—)
  • 作者简介:杨泽青(1982—),女,河北工业大学教授,博士,主要从事数控设备在线检测与误差补偿、复杂设备数字化综合测控与数字孪生运维监控、视觉检测与模式识别等方向研究.E-mail:yangzeqing@hebut.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(52175461;12227801);天津市智能制造专项资助项目(20201199);国家重点研发计划项目(2019YFC0840709)

Optimization method of process parameters of composite molding

YANG Zeqing1,DU Jingxuan1,HU Ning1,ZHANG Yanxing2,JIN Yi3   

  1. 1. School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China; 2. Student Affairs, Hebei University of Architecture, Zhangjiakou 075132, China; 3. Tianjin Aisda Aerospace Technology Co., Ltd., Tianjin 300000, China
  • Received:2024-08-06 Online:2025-01-25 Published:2025-02-25

摘要: 针对传统模压成型工艺能耗高、生产效率低、产品质量不稳定等问题,提出一种基于自适应遗传算法的模压成型工艺优化方法,用来优化模压成型过程中保温时间、模压压力以及温度等参数,该方法将实验得到的工艺数据作为输入层神经元,以成型质量翘曲变形量作为输出层神经元,构建BP神经网络,由此得到翘曲变形与模压压力、保温时间、温度之间的函数关系,然后运用自适应遗传算法对多工艺参数进行优化,经过二进制编码、选择、交叉、变异等步骤,最后解码得到优化后的结果.研究结果表明,自适应遗传算法能够对模压成型过程中因保温时间、模压压力以及温度三者不平衡引起的翘曲变形量有很好的改善效果,能提高产品成型质量.

关键词: 模压成型, 工艺参数, 多参数优化, 自适应遗传算法

Abstract: Aiming at the problems of high energy consumption, low production efficiency and unstable product quality of traditional molding process, the adaptive genetic algorithm was proposed to optimize the multi-parameters of holding time, molding pressure and temperature in the molding process. And the molding pressure, holding time and temperature of process data obtained by experiments are taken as input layer neurons, and the warping deformation of molding mass is taken as output layer neurons. BP neural network was constructed to obtain the functional relationship between warping deformation and molding pressure, holding time and temperature. Then adaptive genetic algorithm is used to optimize multiple process parameters. After the steps of binary coding, selection, crossover and mutation, the optimized results were obtained. The results show that the adaptive genetic algorithm can improve the warping deformation caused by the imbalance of holding time, molding pressure and temperature in the molding process, and improve the molding quality of the product.

Key words: molding, process parameters, multi-parameter optimization, adaptive genetic algorithm

中图分类号: