[1] 《中国心血管健康与疾病报告》编写组.《中国心血管健康与疾病报告2022》要点解读[J].中国心血管杂志, 2023, 28(4): 297-312. DOI:10.3969/j.issn.1007-5410.2023.04.001. [2] ZHANG Y X, ZHANG W L, ZHANG Q Y, et al. CMR motion artifact correction using generative adversarial nets[EB/OL]. 2019: 1902.11121. https://arxiv.org/abs/1902.11121v1. [3] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[EB/OL]. 2014: 1406.2661. https://arxiv.org/abs/1406.2661v1. [4] PARK D, KANG D U, KIM J, et al. Multi-temporal recurrent neural networks for progressive non-uniform single image deblurring with incremental temporal training[M] //Computer Vision-ECCV 2020. Cham: Springer International Publishing, 2020: 327-343. DOI:10.1007/978-3-030-58539-6_20. [5] CHO S J, JI S W, HONG J P, et al. Rethinking coarse-to-fine approach in single image deblurring[C] //2021 IEEE/CVF International Conference on Computer Vision(ICCV). October 10-17, 2021, Montreal, QC, Canada. IEEE, 2021: 4621-4630. DOI:10.1109/ICCV48922.2021.00460. [6] ZAMIR S W, ARORA A, KHAN S, et al. Restormer: efficient transformer for high-resolution image restoration[C] //2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). June 18-24, 2022, New Orleans, LA, USA. IEEE, 2022: 5718-5729. DOI:10.1109/CVPR52688.2022.00564. [7] TSAI F J, PENG Y T, TSAI C C, et al. BANet: a blur-aware attention network for dynamic scene deblurring[J]. IEEE Trans Image Process, 2022, 31: 6789-6799. DOI:10.1109/TIP.2022.3216216. [8] ZHU Y M, ZHENG W, MA Z P. Superpixel conditional generation adversarial network for CMR artifact correction[J]. Image Vis Comput, 2024, 149: 105112. DOI:10.1016/j.imavis.2024.105112. [9] KUPYN O, BUDZAN V, MYKHAILYCH M, et al. DeblurGAN: blind motion deblurring using conditional adversarial networks[C] //2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. June 18-23, 2018, Salt Lake City, UT, USA. IEEE, 2018: 8183-8192. DOI:10.1109/CVPR.2018.00854. [10] KUPYN O, MARTYNIUK T, WU J R, et al. DeblurGAN-v2: deblurring(orders-of-magnitude)faster and better[C] //2019 IEEE/CVF International Conference on Computer Vision(ICCV). October 27 - November 2, 2019, Seoul, Korea(South). IEEE, 2019: 8877-8886. DOI:10.1109/ICCV.2019.00897. [11] LIU Y B, HARIDEVAN A, SCHOFIELD H, et al. Application of ghost-DeblurGAN to fiducial marker detection[C] //2022 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS). October 23-27, 2022, Kyoto, Japan. IEEE, 2022: 6827-6832. DOI:10.1109/IROS47612.2022.9981701. [12] ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C] //2017 IEEE International Conference on Computer Vision(ICCV). October 22-29, 2017, Venice, Italy. IEEE, 2017: 2242-2251. DOI:10.1109/ICCV.2017.244. [13] 刘勇.心血管核磁共振技术原理及应用进展[J].现代医药卫生, 2017, 33(2): 174-176. DOI:10.3969/j.issn.1009-5519.2017.02.004. [14] 曲源,路青,蒋杰.磁共振成像运动伪影控制方法及技术进展[J].中国医疗设备, 2022, 37(11): 164-169. DOI:10.3969/j.issn.1674-1633.2022.11.035. [15] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Commun ACM, 2020, 63(11): 139-144. DOI:10.1145/3422622. [16] AMIRRAJAB S, AL KHALIL Y, PLUIM J, et al. Cardiac MR image segmentation and quality control in the presence of respiratory motion artifacts using simulated data[M] //Statistical Atlases and Computational Models of the Heart. Regular and CMRxMotion Challenge Papers. Cham: Springer Nature Switzerland, 2022: 466-475. DOI:10.1007/978-3-031-23443-9_44. [17] MAO X T, LIU Y M, LIU F Z, et al. Intriguing findings of frequency selection for image deblurring[J]. Proc AAAI Conf Artif Intell, 2023, 37(2): 1905-1913. DOI:10.1609/aaai.v37i2.25281. [18] KONG L S, DONG J X, GE J J, et al. Efficient frequency domain-based transformers for high-quality image deblurring[C] //2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). June 17-24, 2023, Vancouver, BC, Canada. IEEE, 2023: 5886-5895. DOI:10.1109/CVPR52729.2023.00570. ( |