河北大学学报(自然科学版) ›› 2025, Vol. 45 ›› Issue (2): 204-215.DOI: 10.3969/j.issn.1000-1565.2025.02.011

• • 上一篇    

基于改进CycleGAN的非配对CMR图像增强

郑伟1,吴禹波1,冯晓萌1,马泽鹏2,宋铁锐1   

  • 收稿日期:2024-09-20 发布日期:2025-03-26
  • 通讯作者: 宋铁锐(1977—)
  • 作者简介:郑伟(1972—),女,河北大学教授,博士,主要从事图像处理与分析、图像安全通信、图像加密和隐藏方向研究.
    E-mail:147685650@qq.com
  • 基金资助:
    河北省自然科学基金资助项目(F2020201025;H2020201021);河北省高等学校科学技术研究项目(BJ2020030);河北大学附属医院青年科研基金资助项目(2021Q021);河北大学医学学科培育项目(2023B03);河北省卫生健康委医学科学研究课题计划项目(20231477);保定市科技计划项目(2241ZF298)

Non paired CMR image enhancement based on improved CycleGAN

ZHENG Wei1, WU Yubo1, FENG Xiaomeng1, MA Zepeng2,SONG Tierui1   

  1. 1.College of Electronic Information Engineering, Hebei University, Baoding 071002, China; 2.Department of Radiology, Affiliated Hospital of Hebei University, Baoding 071000, China
  • Received:2024-09-20 Published:2025-03-26

摘要: 心脏磁共振成像(cardiac magnetic resonance,CMR)过程中患者误动、异常幅度的呼吸运动、心律失常会造成CMR图像质量下降,为解决现有的CMR图像增强网络需要人为制作配对数据,且图像增强后部分组织纹理细节丢失的问题,提出了基于空频域特征学习的循环一致性生成对抗网络(cycle-consistent generative adversavial network based on spatial-frequency domain feature learning,SFFL-CycleGAN). 研究结果表明,该网络无须人为制作配对数据集,增强后的CMR图像组织纹理细节丰富,在结构相似度(structural similarity,SSIM)和峰值信噪比(peak signal to noise ratio,PSNR)等方面均优于现有的配对训练网络以及原始的CycleGAN网络,图像增强效果好,有效助力病情诊断.

关键词: 心脏磁共振成像, 图像增强, 空频域特征, 循环一致性生成对抗网络

Abstract: During the process of cardiac magnetic resonance imaging(CMR), patient misoperation, respiratory movement, and arrhythmia can cause a decrease in CMR image quality. To solve the problem of manually creating paired data and losing some tissue texture details after image enhancement in existing CMR image enhancement networks This paper proposes a cycle consistent generative adversarial network based on spatial frequency domain feature learning(SFFL CycleGAN). The research results show that this network does not require manually creating paired datasets, and the enhanced CMR images have rich texture details. It is superior to existing paired training networks and the original CycleGAN network in terms of Structural Similarity(SSIM)and Peak Signal to Noise Ratio(PSNR). The image enhancement effect is good and effectively assists in disease diagnosis.

Key words: cardiac magnetic resonance, image enhancement, spatial-frequency domain feature, cycle-consistent generative adversarial network

中图分类号: