[1] MIRHOSEINI M, EARLY S, ELSHAMY N, et al. Actively open-minded thinking is key to combating fake news: a multimethod study[J]. Inf Manag, 2023, 60(3): 103761.DOI:10.1016/j.im.2023.103761. [2] 徐健,张婧,宋玲钰,等.基于RoBERTa-BiLSTM-CRF融合模型的在线评论细粒度情感分析[J].系统工程理论与实践, 2023, 43(12): 3519-3536.DOI: 10.12011/SETP2022-2001. [3] 栾碧雅.社交网络虚假信息传播影响因素及治理策略研究[D].长春:吉林大学, 2020.DOI:10.27162/d.cnki.gjlin.2020.001597. [4] 翟羽佳,过南杉,阎嘉琪.突发公共卫生事件中虚假信息的时滞性扩散与情感关联分析[J].情报科学, 2021, 39(5): 62-69.DOI: 10.13833/j.issn.1007-7634.2021.05.009. [5] LOU Y X, ZHANG Y, LI F, et al. Emoji-based sentiment analysis using attention networks[J]. ACM Trans Asian Low-Resour Lang Inf Process, 2020, 19(5): 1-13.DOI: 10.1016/j.chb.2021.106722. [6] HAAK F. Design and development of an emoji sentiment lexicon[C] // Proceedings of the 16th International Symposium of Information Science(ISI 2021), Glückstadt: Verlag Werner Hülsbusch, 2021:432-438.DOI: 10.5283/epub.44960. [7] 徐海杰.基于深度学习的情感分析研究[D].大庆:东北石油大学,2023.DOI: 10.26995/d.cnki.gdqsc.2022.000496. [8] CHEN J, YAO Z Q, ZHAO S, et al. Fusion pre-trained emoji feature enhancement for sentiment analysis[J]. ACM Trans Asian Low-Resour Lang Inf Process, 2023, 22(4): 1-14.DOI: 10.1145/3578582. [9] RODRÍGUEZ-IBÁNEZ M, CASÁNEZ-VENTURA A, CASTEJÓN-MATEOS F, et al. A review on sentiment analysis from social media platforms[J]. Expert Syst Appl, 2023, 223: 119862.DOI: 10.1016/j.eswa.2023.119862. [10] 柴变芳,杨蕾,王建岭,等.集成局部和全局关键特征的文本情感分类方法[J]. 河北大学学报(自然科学版), 2021,41(2): 201-211.DOI: 10.3969/j.issn.1000-1565.2021.02.014. [11] 李涛,薛刚,霍自祥,等.基于卷积神经网络的石英纤维复合材料损伤缺陷太赫兹智能识别[J].河北大学学报(自然科学版), 2022, 42(6):665-672.DOI: 10.3969/j.issn.1000-1565.2022.06.015. [12] 张昱,苏仡琳,李继涛,等.基于增强多通道图注意力的推荐模型[J].河北大学学报(自然科学版), 2024, 44(2):190-198.DOI: 10.3969/j.issn.1000-1565.2024.02.010. [13] JACOB Y, WINETRAUB Y, RAZ G, et al. Dependency network analysis(DEPNA)reveals context related influence of brain network nodes[J]. Sci Rep, 2016, 6: 27444.DOI: 10.1038/srep27444. [14] 陈明红.信息生态系统中资源配置的博弈行为分析[J].情报理论与实践, 2010, 33(9): 17-22.DOI: 10.16353/j.cnki.1000-7490.2010.09.006. [15] MA Y K, PENG H Y, CAMBRIA E. Targeted aspect-based sentiment analysis via embedding commonsense knowledge into an attentive LSTM[J].Proc AAAI Conf Artif Intell,2018, 32(1): 5876-5883.DOI: 10.1609/aaai.v32i1.12048. [16] PHAN H T, NGUYEN N T, TRAN V C, et al. An approach for a decision-making support system based on measuring the user satisfaction level on Twitter[J]. Inf Sci, 2021, 561: 243-273.DOI: 10.1016/j.ins.2021.01.008. [17] YAO L, MAO C S, LUO Y. Graph convolutional networks for text classification[J].Proc AAAI Conf Artif Intell, 2019, 33(1): 7370-7377.DOI: 10.1609/aaai.v33i01.33017370. [18] CAMBRIA E, PORIA S, HAZARIKA D, et al. SenticNet 5: discovering conceptual primitives for sentiment analysis by means of context embeddings[J].Proc AAAI Conf Artif Intell,2018, 32(1): 1795-1802.DOI: 10.1609/aaai.v32i1.11559. [19] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[C] // Proceedings of the 5th International Conference on Learning Representations, Toulon: Association for Learning Representations, 2017: 1-14.DOI: 10.48550/arXiv.1609.02907. ( |