河北大学学报(自然科学版) ›› 2025, Vol. 45 ›› Issue (2): 216-224.DOI: 10.3969/j.issn.1000-1565.2025.02.012

• • 上一篇    

面向虚假信息的多模态在线评论情感分析

张国防1,袁国强2,赵胜利3   

  • 收稿日期:2024-07-01 发布日期:2025-03-26
  • 通讯作者: 袁国强(1978—)
  • 作者简介:张国防(1979—),男,河北大学副教授,博士,主要从事不确定信息处理、社交网络分析、舆情分析方向研究.
    E-mail:zgf@hbu.edu.cn
  • 基金资助:
    河北省社科基金资助项目(HB23TQ004)

Multimodal online comment sentiment analysis for disinformation

ZHANG Guofang1,YUAN Guoqiang2,ZHAO Shengli3   

  1. 1. School of Cyber Security and Computer, Hebei University, Baoding 071002, China; 2. School of Big Data Science, Hebei Finance University, Baoding 071051, China; 3. College of Civil Engineering and Architecture, Hebei Univerisity, Baoding 071002, China
  • Received:2024-07-01 Published:2025-03-26

摘要: 首先,经过Glove词嵌入和双向长短时记忆网络获取评论数据中文本词语的向量表示.然后,基于词语的句法信息、语义信息和上下文信息,构建异质融合图,并结合图注意力机制,学习评论中的文本特征,进而通过多层感知机融合基于自编码方法获取的表情符号特征,并输出关于虚假信息评论内容的情感极性向量.实验结果表明,与所有的基线模型相比,使用本文所提出的多模态情感分析模型能够充分挖掘社交网络用户表达观点和感情时表情符号与文本之间的潜在交互性,从而更为有效地评估虚假信息评论内容的情感倾向性,表征网络用户的情感态度或属性,进而为提出面向情感分析结果的社交网络虚假传播抑制策略提供用户情感分类方面的理论支撑.

关键词: 图神经网络, 自编码器, 虚假信息, 在线评论, 情感倾向

Abstract: In this paper, firstly,the vector representations of text words in comment data are obtained by using Glove word embedding and bidirectional long short-term memory networks. Then, the syntactic information, semantic information, and contextual information of the words are used to construct a heterogeneous fusion graph and combined with graph attention mechanism to learn the text features in the comments. Furthermore, the expression symbol features obtained on the basis of the auto-encoder method are fused through a multi-layer perceptron, and an emotional polarity vector about the disinformation comment content is output. The research results indicate that compared with all baseline models, the multimodal sentiment analysis model proposed in this paper can fully explore the potential interaction between emoticon and text when social network users express their opinions and emotions. This can more effectively evaluate the emotional tendency of disinformation comments, characterize the emotional attitudes or attributes of network users, and achieve effective classification of user emotions. Furthermore, the proposed model provides theoretical support for proposing strategies to suppress false propagation in social networks based on sentiment analysis results, in terms of user sentiment classification.

Key words: graph neural network, auto-encoder, disinformation, online comments, sentiment inclination

中图分类号: