[1] BATOOL A, BYUN Y C. Brain tumor detection with integrating traditional and computational intelligence approaches across diverse imaging modalities-Challenges and future directions[J]. Comput Biol Med, 2024, 175:108412.DOI:10.1016/j.compbiomed.2024.108412. [2] 唐少平,陶蔷.磁共振成像在脑部疾病诊断中的研究进展[J].中国现代医生,2023,61(25): 132-135.DOI:10.3969/j.issn. 1673-9701.2023.25.031. [3] MOHAN G, SUBASHINI MM. MRI based medical image analysis: Survey on brain tumor grade classification[J]. Biomed Signal Process Contr, 2018, 39: 139-161.DOI:10.1016/j.bspc.2017.07.007. [4] HU H X, MAO W J, LIN Z Z, et al. Multimodal brain tumor segmentation based on an intelligent UNET-LSTM algorithm in smart hospitals[J]. ACM Trans Internet Technol, 2021, 21(3): 1-14.DOI:10.1145/3450519. [5] SASMAL B, DHAL K G. A survey on the utilization of Superpixel image for clustering based image segmentation[J]. Multimed Tools Appl, 2023, 82(23): 35493-35555.DOI:10.1007/s11042-023-14861-9. [6] 唐璐,赵英.基于深度学习的图像分割技术研究综述[J].电脑知识与技术,2023,19(23): 30-32.DOI:10.14004/j.cnki.ckt. 2023.1172. [7] 王赛男,郑雄风.基于边缘计算的图像语义分割应用与研究[J].计算机科学,2020,47(Suppl.2): 276-280.DOI:10. 11896/jsjkx.200900046. [8] 彭璟,罗浩宇,赵淦森,等.深度学习下的医学影像分割算法综述[J].计算机工程与应用,2021,57(3): 44-57.DOI:10.3778/j. issn.1002-8331.2010-0335. [9] RONNEBERGER O, FISCHER P, BROX T.U-Net: Convolutional Networks for Biomedical Image Segmentation[M] //Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015. Cham: Springer International Publishing, 2015:234-241.DOI:10.1007/978-3-319-24574-4_28. [10] 黄敬腾,李锵,关欣.一种用于脑肿瘤分割的改进U形网络[J].工程科学学报,2023,45(6):1003-1012. DOI:10.13374/j.issn2095-9389.2022.03.25.003. [11] CAO T Y, WANG G L, REN L L, et al.Brain tumor magnetic resonance image segmentation by a multiscale contextual attention module combined with a deep residual UNet(MCA-ResUNet)[J]. PhysMed Biol, 2022, 67(9): 095007.DOI:10.1088/1361-6560/ac5e5c. [12] MAJI D, SIGEDAR P, SINGH M. Attention Res-UNet with guided decoder for semantic segmentation of brain tumors[J]. Biomed Signal Process Contr, 2022, 71: 103077.DOI:10.1016/j.bspc.2021.103077. [13] 侯奕辰,彭辉,谢俊章,等.改进Unet++在脑肿瘤图像分割的研究[J].计算机工程与设计,2022,43(6):1725-1731.DOI: 10.16208/j.issn1000-7024.2022.06.029. [14] ZHOU Z W, SIDDIQUEE MM R, TAJBAKHSH N et al. UNet++: redesigning skip connections to exploit multiscale features in image segmentation[J]. IEEE Trans on Med Imag, 2020, 39(6): 1856-1867.DOI:10.1109/TMI.2019.2959609. [15] HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Trans Pattern Anal and Mach Intell, 2020, 42(8): 2011-2023.DOI:10.1109/TPAMI.2019.2913372. [16] 余力, 刘宵雪,闫朝阳,等.面向多模态MRI脑胶质瘤区域三维分割与生存期预测的级联U-Net网络[J].中国图象图形学报,2022,27(3): 850-861.DOI:10.11834/jig.210137. [17] 张晓倩,罗建,杨梅,等.基于改进U-Net模型和CBAM的脑肿瘤MRI图像分割[J].现代计算机,2022,28(16): 60-66.DOI:10.3969/j.issn.1007-1423.2022.16.012. [18] 郑伟,赵金芳,张奕婧,等.基于感受野扩增和注意力机制的U-Net脑肿瘤MR图像分割[J].河北大学学报(自然科学版),2022,42(5): 542-551.DOI:10.3969/j.issn.1000-1565.2022.05.013. [19] HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[EB/OL].2021:2103.02907. https://arxiv.org/abs/2103.02907v1. [20] MISRA D. Mish:A self regularized non-monotonic neural activation function[J].Statistics,2019.DOI:10.48550/arXiv. 1908.08681. [21] JADON S. A survey of loss functions for semantic segmentation[C] //2020 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology(CIBCB), Via del Mar, Chile, IEEE, 2020: 1-7.DOI:10.1109/CIBCB48159.2020.9277638. [22] 袁雪,陈茂洲.基于3D-Unet的sMRI图像分割研究[J].现代电子技术,2023,46(23): 71-74.DOI:10.16652/j.issn.1004-373x. 2023.23.013. [23] LIAO Z Q, PENG H, LIU T. Brain tumor segmentation based on improved swin-UNet[C] // 2023 2nd International Conference on Artificial Intelligence and Intelligent Information Processing(AIIIP). Hangzhou, China, IEEE, 2023:222-225.DOI:10.1109/AIIIP61647. 2023.00048. [24] 苏赋,方东,王龙业,等.基于双解码路径DD-UNet的脑肿瘤图像分割算法[J].光电子·激光,2023,34(3): 328-336.DOI:10.16136/j.joel.2023.03.0203. [25] 林嘉豪,王瑜,肖洪兵,等.LRAE-Unet:轻量级MRI脑肿瘤全自动分割网络[J].中国医学物理学杂志,2024,41(1):43-49.DOI:10.3969/j.issn.1005-202X.2024.01.006. [26] 黄炜庭.基于AI UNet的胶质瘤病变图像分割[D].兰州:兰州大学,2024.DOI:10.27204/d.cnki.glzhu.2023.001535. ( |