河北大学学报(自然科学版) ›› 2017, Vol. 37 ›› Issue (4): 337-342.DOI: 10.3969/j.issn.1000-1565.2017.04.001

• •    下一篇

基于多元模糊回归的应急物资需求预测模型

郭子雪1,2,韩瑞2,齐美然2   

  • 收稿日期:2017-02-01 出版日期:2017-07-25 发布日期:2017-07-25
  • 作者简介:郭子雪(1964—),男,河北清河人,北京工商大学特聘研究员,河北大学教授,博士生导师,主要从事决策理论与方法、应急管理、物流与供应链管理等方面的研究. E-mail:guo_zx@163.com
  • 基金资助:
    北京工商大学首都流通业研究基地开放课题研究基金资助项目(JD-KFKT-2016-02);河北省社科基金资助项目(HB16GL010);河北省教育厅人文社会科学研究重大攻关项目(ZD201439)

Predictive method of emergency supplies demand based on multiple fuzzy linear regression model

GUO Zixue1,2, HAN Rui2,QI Meiran2   

  1. 1.Research Center for Capital Commercial Industry, Beijing Technology and Business University, Beijing 100048, China; 2.Department of Management, Hebei University, Baoding 071002, China
  • Received:2017-02-01 Online:2017-07-25 Published:2017-07-25

摘要: 为了提高应急物资需求预测的精度,基于应急物资需求预测问题的特点,引入对称三角模糊数表示影响因素的模糊特征,建立基于多元模糊线性回归的应急物资需求预测模型,并给出多元模糊线性回归预测模型的参数估计方法,通过实证案例分析,验证预测方法的有效性.结果表明,灾害级别、受灾人口、受灾面积是影响应急物资需求预测的重要因素,针对灾害级别、受灾人口、受灾面积等因素的不确定性特征,用对称三角模糊数表征有关模糊属性,有助于提高应急物资需求预测的准确性.

关键词: 对称三角模糊数, 应急物资, 应急物资需求预测, 多元模糊回归

Abstract: In order to improve the prediction accuracy, based on the characteristics of emergency supplies demand prediction, the symmetric triangle fuzzy numbers were introduced in this paper to describe fuzzy feature of effect factors of emergency demand.The emergency supplies demand prediction method based on multiple fuzzy linear regression model was proposed, the parameter estimation method of the proposed model was presented.Finally, a numerical example shows that the method is valid.The results show that the disaster level, the affected population and the damage area are important factors influencing the emergency supplies demand prediction.To deal with the uncertainty attribute in the process of predicting emergency demands, using the symmetric triangular fuzzy number to represent the fuzzy attributes can improve the accuracy of emergency supplies demand prediction.

Key words: symmetric triangle fuzzy number, emergency supplies, emergency supplies demand prediction, multiple fuzzy regression

中图分类号: