[1] SEIFFERT H J.Aufgabe 16[J].Die Wurzel,1995,29(87):221-222. [2] STOLARSKY K B.The power and generalized logarithmic means[J].The American Mathematical Monthly,1980,87(7):545-548. [3] CHU Y M,ZONG C,WANG G D.Optimal convex combination bounds of Seiffert and geometric means for the arithmetic mean[J].J Math Inequal,2011,5(3):429-434. [4] RICHARDS K C.Sharp power mean bounds for the Gaussian hypergeometric function[J].Journal of Mathematical Analysis and Applications,2005,3089(1):303-313. [5] CHU Y M,WANG M K,WANG G D.The optimal generalized logarithmic Mean boundcs for seiffert’s mean[J].Acta Mathematica Scientia,2012,32B(4):1619-1626. [6] 孟祥菊,潘学功,高梦涵.对数平均的最优凸组合界[J].河北大学学报(自然科学版),2014,34(5):471-474.DOI:10.3969/j.issn.1000-1565.2014.05.005 MENG X J, PAN X G, GAO M H.Optimal convex combination bounds for logarithmic mean[J].Journal of Hebei University(Natural Science Edition),2014,34(5):471-474.DOI:10.3969/j.issn.1000-1565.2014.05.005 [7] 赵铁洪,褚玉明.对数平均和双参数广义Muirhead平均之间的比较[J].中国科学:数学,2015,45(3):233-244. ZHAO T H,CHU Y M.Comparison between the logarithmic and two-parameter generalized Muirhead means[J].Science China(mathematics),2015,45(3):233-244. [8] 史明宇,褚玉明,蒋月评.关于幂平均、调和平均和指数平均的最佳不等式[J].数学物理学报,2011,31A(5):1377-1384. SHI M Y,CHU Y M,JIANG Y P.Optimal inequalities related to the power, harmonic and identric means[J].Acta Mathematica Scientia,2011,31A(5):1377-1384. [9] 孙惠,褚玉明.Toader平均的二次与调和平均界[J].数学物理学报,2015,35A(1):36-42. SUN H, CHU Y M. Bounds for toader mean by quadratic and harmonic means[J].Acta Mathematica Scientia,2015,35A(1):36-42. |