河北大学学报(自然科学版) ›› 2020, Vol. 40 ›› Issue (3): 328-336.DOI: 10.3969/j.issn.1000-1565.2020.03.015

• • 上一篇    

基于Wasserstein距离的双向学习推理

花强,刘轶功,张峰,董春茹   

  • 收稿日期:2019-07-02 出版日期:2020-05-25 发布日期:2020-05-25
  • 通讯作者: 董春茹(1980—),男,河北保定人,河北大学副教授,博士,主要从事机器学习、深度学习方面的研究.E-mail: dongcr@hbu.edu.cn
  • 作者简介:花强(1973—),男,河北邯郸人,河北大学教授,主要从事机器学习、人工神经网络方面的研究. E-mail: huaq@hbu.edu.cn
  • 基金资助:
    河北省自然科学基金面上项目(F2018201115,F2018201096);河北省教育厅科学技术研究重点项目(ZD2019021);河北省教育厅科学技术研究青年基金资助项目(QN2017019)

Bidirectional learned inference based on Wasserstein distance

HUA Qiang, LIU Yigong, ZHANG Feng, DONG Chunru   

  1. Key Laboratory of Machine Learning and Computational Intelligence of Hebei Province, Hebei University, Baoding 071002, China
  • Received:2019-07-02 Online:2020-05-25 Published:2020-05-25

摘要: 基于Wasserstein距离的生成对抗网络(WGAN)将编码器和生成器双向集成于其模型中,从而增强了生成模型的学习能力,但其在优化目标中使用KL散度度量分布间的差异,会导致学习训练过程中出现梯度消失或梯度爆炸问题,降低模型鲁棒性.为克服这一问题,提出了一种基于Wasserstein距离的双向学习推理(WBLI)模型.文章首先建立了真实数据分布与隐数据分布双向学习网络,然后引入Wasserstein距离度量联合概率分布的差异性,并据此推导了可解的损失代价函数,给出了完整的网络学习模型和迭代算法.实验结果表明,WBLI模型有效缓解了传统GAN及其变种的模式坍塌问题,增强了训练学习的鲁棒性,可生产辨识度更高的样本.

关键词: 生成对抗网络, KL散度, Wasserstein距离, 变分自编码器

Abstract: In WGAN, embedding encoder into Generative Adversarial Networks(GAN)can enhance the learning ability of the generative model. However, using the Kullback-Leibler(KL)divergence to measure the difference between two distributions in the optimization objective will lead to the gradient vanishing or gradient explosion problem in the learning training process and reduce the robustness of model. In order to tackle this problem, a Wasserstein-distance-based Bidirectional Learned Inference(WBLI)model is proposed in this paper. A bidirectional network is first established for learning the distribution of the true data and latent variables, where the difference of the joint probability distribution is measured by the Wasserstein distance. Based on this Wasserstein distance, we redesign the loss function which is solvable and consequently propose an iterative algorithm. The experimental results show that the WBLI model overcomes the defects of traditional GAN and its variants. It effectively eliminates the model collapse problem of generating models, increases the robustness of training learning, and contributes to the improvement of the recognition rate of classifiers.

Key words: generative adversarial networks, KL divergence, Wasserstein distance, variational auto-encoder

中图分类号: