[1] LU J, LI S P, WU Y, et al. Are Hong Kong and Taiwan stepping-stones for invasive species to the mainland of China?[J]. Ecol Evol, 2018, 8(4): 1966-1973. DOI:10.1002/ece3.3818. [2] MACK R N, SIMBERLOFF D, MARK LONSDALE W, et al. Biotic invasions: causes, epidemiology, global consequences, and control[J]. Ecol Appl, 2000, 10(3): 689-710. DOI:10.1890/1051-0761(2000)010[0689:bicegc] 2.0.co;2. [3] PYSEK P, JAROSIK V, HULME P E, et al. Disentangling the role of environmental and human pressures on biological invasions across Europe[J]. PNAS, 2010, 107(27): 12157-12162. DOI:10.1073/pnas.1002314107. [4] DALMAZZONE S, GIACCARIA S. Economic drivers of biological invasions: a worldwide, bio-geographic analysis[J]. Ecological Economics, 2014, 105: 154-165. DOI: 10.1016/j.ecolecon.2014.05.008. [5] GREN I M, CAMPOS M. Development and non-indigenous species at the global scale[J]. Reg Environ Chang, 2011, 11(3): 593-601. DOI:10.1007/s10113-010-0183-8. [6] ESSL F, DULLINGER S, RABITSCH W, et al. Socioeconomic legacy yields an invasion debt[J]. PNAS, 2011, 108(1): 203-207. DOI:10.1073/pnas.1011728108. [7] WESTPHAL M I, BROWNE M, MACKINNON K, et al. The link between international trade and the global distribution of invasive alien species[J]. Biol Invasions, 2008, 10(4): 391-398. DOI:10.1007/s10530-007-9138-5. [8] EARLY R, BRADLEY B A, DUKES J S, et al. Global threats from invasive alien species in the twenty-first century and national response capacities[J]. Nat Commun, 2016, 7: 12485. DOI:10.1038/ncomms12485. [9] HULME P E. Trade, transport and trouble: managing invasive species pathways in an era of globalization[J]. J Appl Ecol, 2009, 46(1): 10-18. DOI:10.1111/j.1365-2664.2008.01600.x. [10] SEEBENS H, ESSL F, DAWSON W, et al. Global trade will accelerate plant invasions in emerging economies under climate change[J]. Glob Chang Biol, 2015, 21(11): 4128-4140. DOI:10.1111/gcb.13021. [11] MACK R N. Plant naturalizations and invasions in the eastern United States: 1634-1860[J]. Ann Mo Bot Gard, 2003, 90(1): 77. DOI:10.2307/3298528. [12] MCNEELY J A. As the world gets smaller, the chances of invasion grow[J]. Euphytica, 2006, 148(1-2): 5-15. DOI:10.1007/s10681-006-5937-5. [13] CHAPMAN D, PURSE B V, ROY H E, et al. Global trade networks determine the distribution of invasive non-native species[J]. Global Ecol Biogeogr, 2017, 26(8): 907-917. DOI:10.1111/geb.12599. [14] CARDADOR L, CARRETE M, GALLARDO B, et al. Combining trade data and niche modelling improves predictions of the origin and distribution of non-native European populations of a globally invasive species[J]. J Biogeogr, 2016, 43(5): 967-978. DOI:10.1111/jbi.12694. [15] 李大林.我国每年因外来生物入侵经济损失超两千亿元[J].广西质量监督导报,2014(11):30. DOI:10.3969/j.issn.1009-6310.2014.11.006. [16] 杨朗,黄立飞,姜建军.警惕和关注中国-东盟贸易区的入侵生物[C] //中国植物保护学会生物入侵分会.第三届全国生物入侵大会论文摘要集.北京:中国植物保护学会生物入侵分会,2010. [17] 刘春兴.生物入侵的法律对策研究[D].北京:北京林业大学,2007. [18] 解焱.生物入侵与中国生态安全[M].石家庄:河北科学技术出版社,2008. [19] 李坤陶,李文增.生物入侵与防治[M].北京:光明日报出版社,2006. [20] 徐海根,强胜.中国外来入侵生物[M].北京:科学出版社,2011. [21] 徐海根,强胜.中国外来入侵生物[M].修订版.北京:科学出版社,2018. [22] 李振宇,解焱.中国外来入侵种[M].北京:中国林业出版社,2002. [23] 蒙彦良,陈凤新.贸易视角下中国外来植物的变化及其增长预测[J].植物检疫,2020,34(2):1-8.DOI:10.19662/j.cnki.issn1005-2755.2020.02.001. [24] 杨帆,冯翔,阮羚,等.基于皮尔逊相关系数法的水树枝与超低频介损的相关性研究[J].高压电器,2014,50(6):21-25. DOI: 10.13296/j.1001-1609.hva.2014.06.004 [25] 陈凤新.昌黎县城市发展与规划研究[D].天津:天津大学,2002. [26] 夏忠敏.贵州省植物检疫对象的种类及危害[J].贵州农业科学,1998,26(4):21-23. [27] SHI Z H, WANG L L, ZHANG H Y. Low diversity bacterial community and the trapping activity of metabolites from cultivable bacteria species in the female reproductive system of the oriental fruit fly, bactrocera dorsalis hendel(Diptera: Tephritidae)[J]. Int J Mol Sci, 2012, 13(5): 6266-6278. DOI:10.3390/ijms13056266. [28] ESSL F, BACHER S, BLACKBURN T M, et al. Crossing frontiers in tackling pathways of biological invasions[J]. BioScience, 2015, 65(8): 769-782. DOI:10.1093/biosci/biv082. [29] LOCKWOOD J L, CASSEY P, BLACKBURN T. The role of propagule pressure in explaining species invasions[J]. Trends Ecol Evol, 2005, 20(5): 223-228. DOI:10.1016/j.tree.2005.02.004. [30] SIMBERLOFF D. The role of propagule pressure in biological invasions[J]. Annu Rev Ecol Evol Syst, 2009, 40(1): 81-102. DOI:10.1146/annurev.ecolsys.110308.120304. [31] WARREN R J II, BAHN V, BRADFORD M A. The interaction between propagule pressure, habitat suitability and density-dependent reproduction in species invasion[J]. Oikos, 2012, 121(6): 874-881. DOI:10.1111/j.1600-0706.2011.20174.x. [32] SOFAER H R, JARNEVICH C S. Accounting for sampling patterns reverses the relative importance of trade and climate for the global sharing of exotic plants[J]. Global Ecol Biogeogr, 2017, 26(6): 669-678. DOI:10.1111/geb.12577. [33] FREED L A. Avian invasions: the ecology and evolution of exotic birds. Tim M. Black burn, Julie L. Lock Wood, and Phillip Cassey[J]. Integr Comp Biol, 2010, 50(4): 687-688. DOI:10.1093/icb/icq059. [34] BLACKBURN T M, PROWSE T A A, LOCKWOOD J L, et al. Propagule pressure as a driver of establishment success in deliberately introduced exotic species: fact or artefact?[J]. Biol Invasions, 2013, 15(7): 1459-1469. DOI:10.1007/s10530-013-0451-x. [35] GALLARDO B, ALDRIDGE D C. The ‘dirty dozen: socio-economic factors amplify the invasion potential of 12 high-risk aquatic invasive species in Great Britain and Ireland[J]. J Appl Ecol, 2013, 50(3): 757-766. DOI:10.1111/1365-2664.12079. [36] GALLARDO B, ZIERITZ A, ALDRIDGE D C. The importance of the human footprint in shaping the global distribution of terrestrial, freshwater and marine invaders[J]. PLoS One, 2015, 10(5): e0125801. DOI:10.1371/journal.pone.0125801. |