[1] 王明星.大气化学[M].北京:气象出版社,1999. [2] XU D, JIN H, WEN J,et al. Hydrogen sulfide protects against endoplasmic reticulum stress and mitochondrial injury in nucleus pulposus cells and ameliorates intervertebral disc degeneration[J].Pharmacological Research,2017,117:357-369.DOI:10.1016/ j.phrs.2017.01.005. [3] YANG Y,WANG Y,SUN J,et al. Dietary methionine restriction reduces hepatic steatosis and oxidative stress in high-fat-fed mice by promoting H2S production[J].Food & Function,2019,10(1):61-77.DOI:10.1039/c8fo01629a. [4] WANG B, HUANG C, CHEN L J,et al.The emerging roles of the gaseous signaling molecules NO, H2S, and CO in the regulation of stem cells[J].ACS Biomaterials Science & Engineering, 2020, 6(2): 798-812. DOI:10.1021/acsbiomaterials.9b01681. [5] DE ARAU 'JO S, OLIVEIRA A P, SOUSA F B M,et al. AMPK activation promotes gastroprotection through mutual interaction with the gaseous mediators H2S,NO,and CO[J]. Nitric Oxide-Biology and Chemistry,2018,78:60-71.DOI:10.1016/j.niox.2018. 05.008. [6] 王晓丽,王兆亚,郭晓强,等.硫化氢及其相关药物的研究进展[J].药学学报,2016,51(4): 507-516.DOI:10.16438/j. 0513-4870.2015-0635. [7] 邓 平,赵正春.硫化氢与心血管疾病关系的研究进展[J].中国心血管杂志,2013,18(2):146-148. DOI:10.3969/j.issn. 1007-5410.2013.02.018. [8] WANG K, DEMIR I E, D’HAESE J G, et al. The neurotrophic factor neurturin contributes toward an aggressive cancer cell phenotype, neuropathic pain and neuronal plasticity in pancreatic cancer [J]. Carcinogenesis,2014, 35(1):103-113. DOI:10.1093/carcin/bgt312. [9] CITI V, PIRAGINE E, TESTAI L,et al.The role of hydrogen sulfide and H2S-donors in myocardial protection against ischemia / reperfusion injury [J].Current Medicinal Chemistry,2018,25(34): 4380-4401.DOI:10.2174/092986732566618 0212120504. [10] MENG G L, MA Y, XIE L P,et al. Emerging role of hydrogen sulfide in hypertension and related cardiovascular diseases [J]. British Journal of Pharmacology,2015,172(23):5501-5511.DOI:10.1111/bph.12900. [11] WANG L C, TIAN F B, FENG W X, et al.Order-disorder phase transition and dissociation of hydrogen sulfide under high pressure: Ab initio molecular dynamics study[J].The Journal of Chemical Physics,2010, 132(16):164506. DOI:10.1063/1.3392673. [12] NAUMENKO O V, POLOVTSEVA E R.FTIR spectrum of hydrogen sulfide between 9995 and 10,310 cm-1[J]. Journal of Quantitative Spectroscopy & Radiative Transfer,2019,236:106604. DOI:10.1016/j.jqsrt.2019.106604. [13] GLUSHKOV P A, BEKHTEREVA E S. Studying the fundamental υ2 band of the H2S molecule: line positions, intensities, and half-widths[J].Russian Physics Journal,2018, 61(5):828-832. DOI:10.1007/s11182-018-1466-7. [14] ZHENG Y J, DING S L. Algebraic description of stretching and bending vibrational spectra of H2O and H2S[J]. Journal of Molecular Spectroscopy,2000,201(1):109-115.DOI:10.1006/jmsp.2000.8060. [15] ULENIKOV O N, LIU A W, BEKHTEREVA E S,et al. On the study of high-resolution rovibrational spectrum of H2S in the region of 7300-7900 cm-1[J].Journal of Molecular Spectroscopy,2004,226(1):57-70. DOI:10.1016/j.jms.2004.03.014. [16] CHUBB K L, NAUMENKO O, KEELY S,et al. Marvel analysis of the measured high-resolution rovibrational spectra of H322S[J]. Journal of Quantitative Spectroscopy & Radiative Transfer,2018,218:178-186. DOI:10.1016/j.jqsrt.2018.07.012. [17] TYUTEREV V G, RÉGALIA-JARLOT L, SCHWENKE D W,et al. Global Variational calculations of high-resolution rovibrational spectra:isotopic effects, intensity anomalies and experimental confirmations for H2S,HDS,D2S molecules[J].Comptes Rendus Physique,2004,5(2): 189-199.DOI:10.1016/j.crhy.2004.01.017. [18] MILLER R E, LEROI G E, HARD T M. Analysis of the pure rotational absorption spectra of hydrogen sulfide and deuterium sulfide[J].The Journal of Chemical Physics,1969,50(2):677-684.DOI:10.1063/1.1671116. [19] ZHENG L J, LI P, QIN R F,et al. Research situation and developing tendency for optical measurement technology of gas density[J]. Laser & Optoelectronics Progress,2008,45(8):24-32.DOI:10.3788/lop20084508.0024. [20] 付丽丽,张宁,刘娟,等.玉米芯吸附协同低温等离子体对H2S的去除作用[J].科学技术与工程,2018, 18(30):245-248. DOI:10.3969/j.issn.1671-1815.2018.30.040. [21] 赵璐.低温等离子体与半导体催化剂协同分解硫化氢[D].大连:大连理工大学,2014. [22] LU S Y, CHEN L, HUANG Q X,et al. Decomposition of ammonia and hydrogen sulfide in simulated sludge drying waste gas by a novel non-thermal plasma[J]. Chemosphere,2014,117:781-785. DOI:10.1016/j.chemosphere.2014.10.036. [23] 杨建涛,潘华,陈杰,等.低温等离子体吸附两段式系统降解硫化氢[J].浙江大学学报(工学版),2010,44(12):2411-2415. DOI:10.3785/j.issn.1008-973X.2010.12.030. [24] 刘慧娟,张健,刘笑寒,等.反应间距对DBD发生器放电特征的影响及去除H2S的实验研究[J].应用化工,2017,46(12): 2331-2335.DOI:10.3969/j.issn.1671-3206.2017.12.012. [25] 刘思健.介质阻挡放电等离子体表面修饰碳基催化剂脱除硫化氢研究[D].昆明:昆明理工大学,2017. [26] 赵冲,蔡宇翔,杨洋,等.介质阻挡放电等离子体脱除硫化氢的能效优化研究[J].现代化工,2017,37(10):152-155,157. DOI:10.16606/j.cnki.issn 0253-4320.2017.10.036. [27] HERZBERG G. Molecular spectra and molecular structure Ⅳ: spectra of diatomic molecular [M].New York:Van Nostrand, 1953. ( |