[1] WATSON H W,GALTON F. On the probability of the extinction of families[J]. J Anthropol Inst GBIrel,1875, 4: 138. DOI:10.2307/2841222. [2] LI Z H. Measure-valued branching processes[M] //Probability and Its Applications.Berlin,Heidelberg: Springer Berlin Heidelberg, 2011: 29-56. DOI:10.1007/978-3-642-15004-3_2. [3] DYNKIN E B. Superprocesses and partial differential equations[J]. Ann Probab,1993, 21(3): 1185-1262. DOI:10.1214/aop/1176989116. [4] CHEN Z Q, REN Y X, WANG H. An almost sure scaling limit theorem for Dawson-Watanabe superprocesses[J]. J Funct Anal, 2008, 254(7): 1988-2019.DOI:10.1016/j.jfa.2007.12.003.http://dx.doi.org/10.1016/j.jfa.2007.12.003. [5] CHEN Z Q, REN Y X, YANG T. Law of large numbers for branching symmetric hunt processes with measure-valued branching rates[J]. J Theor Probab, 2017, 30(3): 898-931. DOI:10.1007/s10959-016-0671-y. [6] CHEN Z Q, REN Y X, YANG T. Skeleton decomposition and law of large numbers for supercritical superprocesses[J]. Acta Appl Math, 2019, 159(1): 225-285. DOI:10.1007/s10440-018-0190-1. [7] CHEN Z Q, SHIOZAWA Y. Limit theorems for branching Markov processes[J]. J Funct Anal, 2007, 250(2): 374-399.DOI:10.1016/j.jfa.2007.05.011. [8] ENGLANDER J. Law of large numbers for superdiffusions: The non-ergodic case[J]. Ann Inst Henri Poincaré Probab Statist, 2009, 45(1):1-6. DOI:10.1214/07-aihp156. [9] ENGLANDER J, HARRIS S C,KYPRIANOU A E. Strong Law of Large Numbers for branching diffusions[J]. Ann Inst Poincaré Probab Statist, 2010, 46(1):279-298. DOI:10.1214/09-aihp203. [10] ECKHOFF M, KYPRIANOU A E, WINKEL M. Spines, skeletons and the strong law of large numbers for superdiffusions[J]. Ann Probab, 2015, 43(5):2545-2610. [11] ENGLANDER J,WINTER A. Law of large numbers for a class of superdiffusions[J]. Ann De Inst Henri Poincare Probab Stat, 2006, 42(2): 171-185.DOI:10.1016/j.anihpb.2005.03.004. [12] KYPRIANOU A E, PALAU S, REN Y X. Almost sure growth of supercritical multi-type continuous-state branching process[J]. Lat Am J Probab Math Stat,2018, 15(1): 409. DOI:10.30757/alea.v15-17. [13] KOURITZIN M A,REN Y X. A strong law of large numbers for super-stable processes[J]. Stoch Process Appl, 2014, 124(1): 505-521.DOI:10.1016/j.spa.2013.08.009. [14] LIU R L, REN Y X, SONG R M. Strong law of large numbers for a class of superdiffusions[J]. Acta Appl Math, 2013, 123(1): 73-97. DOI:10.1007/s10440-012-9715-1. [15] WANG L. An almost sure limit theorem for super-Brownian motion[J]. J Theor Probab, 2010, 23(2): 401-416. DOI:10.1007/s10959-008-0200-8. [16] WANG L. Strong law of large number for branching hunt processes[J]. Acta Math Sin Engl Ser, 2015, 31(7): 1189-1202. DOI:10.1007/s10114-015-3413-7. [17] CHEN Z Q, REN Y X,SONG R M. LlogL criterion for a class of multitype superdiffusions with non-local branching mechanisms[J]. Sci China Math, 2019, 62(8): 1439-1462. DOI:10.1007/s11425-017-9294-9. [18] HARDY R, HARRIS S C.A spine approach to branching diffusions with applications to Lp-convergence of martingales[M] //Lecture Notes in Mathematics.Berlin,Heidelbery:Springer Berlin Heiderberg, 2009:281-330. DOI:10.1007/978-3-642-01763-6_11. [19] HARRIS S C. Convergence of a ‘gibbs-boltzmann’ random measure for a typed branching diffusion[J]. Séminaire De Probab XXXIV, 2000:239-256.DOI:10.1007/BFb0103806. [20] LIU R L, REN Y X,SONG R M. LlogL criterion for a class of superdiffusions[J]. J Appl Probab, 2009, 46(2): 479-496. DOI:10.1017/s0021900200005593. [21] LIU R L, REN Y X, SONG R M. Llog Lcondition for supercritical branching hunt processes[J]. J Theor Probab, 2011, 24(1): 170-193. DOI:10.1007/s10959-010-0322-7. [22] KESTEN H, STIGUM B P. A limit theorem for multidimensional Galton-Watson processes[J]. Ann Math Statist, 1966, 37(5): 1211-1223. DOI:10.1214/aoms/1177699266. [23] KESTEN H, STIGUM B P. Additional limit theorems for indecomposable multidimensional Galton-Watson processes[J]. Ann Math Statist, 1966, 37(6): 1463-1481. DOI:10.1214/aoms/1177699139. [24] ATHREYA K B. Limit theorems for multitype continuous time Markov branching processes[J].Wahrscheinlichkeitstheorie Verwandte Gebiete, 1969, 12(4): 320-332. DOI:10.1007/BF00538753. [25] ATHREYA K B. Limit theorems for multitype continuous time Markov branching processes[J]. Z Wahrscheinlichkeitstheorie Verw Gebiete, 1969, 13(3/4):204-214. DOI:10.1007/bf00539201. [26] ATHREYA K B. Some refinements in the theory of supercritical multitype Markov branching processes[J]. Z Wahrscheinlichkeitstheorie Verw Gebiete, 1971, 20(1): 47-57. DOI:10.1007/BF00534165. [27] ASMUSSEN S, KEIDING N. Martingale central limit theorems and asymptotic estimation theory for multitype branching processes[J]. Adv Appl Probab, 1978, 10(1): 109-129. DOI:10.1017/s0001867800029505. [28] ASMUSSEN S, HERING H. Branching Processes[M]. Boston:Birkh¨auser,1983. [29] BOJDECKI T, GOROSTIZA L G,TALARCZYK A. Limit theorems for occupation time fluctuations of branching systems I: Long-range dependence[J]. Stoch Process Appl, 2006, 116(1): 1-18.DOI:10.1016/j.spa.2005.07.002. [30] BOJDECKI T, GOROSTIZA L G,TALARCZYK A. Limit theorems for occupation time fluctuations of branching systems II: Critical and large dimensions[J]. Stoch Process Appl, 2006, 116(1): 19-35.DOI:10.1016/j.spa.2005.07.004. [31] BOJDECKI T, GOROSTIZA L G,TALARCZYK A. Occupation time limits of inhomogeneous Poisson systems of independent particles[J]. Stoch Process Appl, 2008, 118(1): 28-52.DOI:10.1016/j.spa.2007.03.008. [32] MILOS P. Occupation time fluctuations of Poisson and equilibrium finite variance branching systems[EB/OL]. 2005:arXiv: math/0512414[math.PR]. https://arxiv.org/abs/math/0512414. [33] MILOS P. Occupation time fluctuations of Poisson and equilibrium branching systems in critical and large dimensions[EB/OL]. 2007:arXiv: 0707.0316[math.PR]. https://arxiv.org/abs/0707.0316. [34] MIŁOS ' P. Occupation times of subcritical branching immigration systems with Markov motions[J]. Stoch Process Appl, 2009, 119(10): 3211-3237.DOI:10.1016/j.spa.2009.04.003. [35] MIŁOS ' P. Occupation times of subcritical branching immigration systems with Markov motion, CLT and deviation principles[J]. Infin Dimens Anal Quantum Probab Relat Top, 2012, 15(1):1250002. DOI:10.1142/s0219025712500026. [36] ADAMCZAKR, MIŁOS ' P. CLT for Ornstein-Uhlenbeck branching particle system[J]. Electron J Probab, 2015, 20(none):1-35.DOI:10.1214/ejp.v20-4233. [37] MIŁOS ' P. Spatial CLT for the supercritical Ornstein-Uhlenbecksuperprocess[EB/OL]. https://www.researchgate.net/publication/222091760_Spatial_CLT_for_the_supercritical_Ornstein-Uhlenbeck_superprocess. [38] REN Y X, SONG R M, ZHANG R. Central limit theorems for super Ornstein-Uhlenbeck processes[J]. Acta Appl Math, 2014, 130(1): 9-49. DOI:10.1007/s10440-013-9837-0. [39] MIŁOS ' P. Spatial central limit theorem for supercritical superprocesses[J]. J Theor Probab, 2018, 31(1): 1-40. DOI:10.1007/s10959-016-0704-6. [40] REN Y X, SONG R M, ZHANG R. Central limit theorems for supercritical branching nonsymmetric Markov processes[J]. Ann Probab, 2017, 45(1):564-623. DOI:10.1214/14-aop987. [41] REN Y X, SONG R M, ZHANG R. Limit theorems for some critical superprocesses[J]. Illinois J Math, 2015, 59(1): 235-276. DOI:10.1215/ijm/1455203166. [42] KALETA K, KULCZYCKI T. Intrinsic ultracontractivity for schr?dinger operators based on fractional laplacians[J]. Potential Anal, 2010, 33(4): 313-339. DOI:10.1007/s11118-010-9170-4. [43] KULCZYCKI T, SIUDEJA B. Intrinsic ultracontractivity of the Feynman-Kac semigroup for relativistic stable processes[J]. Trans Amer Math Soc, 2006, 358(11): 5025-5057. DOI:10.1090/s0002-9947-06-03931-6. [44] KIM P, SONG R M,VONDRAC EK Z. Two-sided Green function estimates for killed subordinate Brownian motions[J]. Proc Lond Math Soc, 2012, 104(5): 927-958. DOI:10.1112/plms/pdr050. [45] KIM P, SONG R M,VONDRAC EK Z. Potential theory of subordinate Brownian motions with Gaussian components[J]. Stoch Process Appl, 2013, 123(3): 764-795.DOI:10.1016/j.spa.2012.11.007. [46] DAVIESE B, SIMON B. Ultracontractivity and the heat kernel for Schrödinger operators and Dirichlet Laplacians[J]. J Funct Anal, 1984, 59(2): 335-395. DOI:10.1016/0022-1236(84)90076-4. [47] REN Y X, SONG R M, ZHANG R. Central limit theorems for supercritical superprocesses[J].Stoch Process Appl, 2015, 125(2): 428-457.DOI:10.1016/j.spa.2014.09.014. [48] MARKS R, MIŁOS ' P. CLT for supercritical branching processes with heavy-tailed branching law[EB/OL]. https://www.researchgate.net/publication/323796440_CLT_for_supercritical_branching_processes_with_heavy-tailed_branching_law. [49] REN Y X, SONG R M, SUN Z Y,et al. Stable central limit theorems for super Ornstein-Uhlenbeck processes[J]. Electron J Probab, 2019, 24:1-42. DOI:10.1214/19-ejp396. [50] REN Y X, SONG R M, SUN Z Y, et al.Stable central limit theorems for super Ornstein-Uhlenbeck processesⅡ[EB/OL].[20210-9-01].https://www.researchgate.net/publication/341639696_Stable_Central_Limit_Theorems_for_Super_Ornstein-Uhlenbeck_Processes_II ( |