河北大学学报(自然科学版) ›› 2021, Vol. 41 ›› Issue (5): 551-564.DOI: 10.3969/j.issn.1000-1565.2021.05.012
李枢强,赵喆,侯仲娥
收稿日期:
2021-05-22
出版日期:
2021-09-25
发布日期:
2021-09-28
通讯作者:
赵喆(1986—)
作者简介:
李枢强(1965—),男,河北保定人,中国科学院动物研究所研究员,博士生导师,主要从事特提斯海变迁与动物多样性演化等方向的研究. E-mail:lisq@ioz.ac.cn
基金资助:
LI Shuqiang, ZHAO Zhe, HOU Zhonge
Received:
2021-05-22
Online:
2021-09-25
Published:
2021-09-28
摘要: 特提斯海是曾存在于冈瓦纳古陆和劳亚古陆之间的古海洋.特提斯海在其近2亿年的演化历程中,经历了扩张、分裂、收缩直至消亡.本文回顾了特提斯海区域不同动物类群的多样性研究,系统总结了特提斯海演化和变迁对全球动物多样性格局的影响.特提斯海演化通过改变栖息地之间的物理联系,决定了动物的扩散和隔离,进而直接影响了现今全球动物多样性的空间分布和组成;特提斯海的海陆变迁通过改变区域地理和生态环境,如阿尔卑斯-喜马拉雅造山带的形成、淡水生境的出现、中亚地区的干旱化、地中海盐度危机的发生,以及新的洞穴和湖泊生境的形成等,间接影响了特提斯海区域内动物的起源、扩散、分化、存留和灭绝.本文强调了特提斯海的演化和变迁是全球动物多样性演化的重要驱动因素,并揭示了特提斯海区域现今动物多样性格局的形成与地质构造运动之间的潜在联系.
中图分类号:
李枢强,赵喆,侯仲娥. 特提斯海变迁对全球动物分布的影响[J]. 河北大学学报(自然科学版), 2021, 41(5): 551-564.
LI Shuqiang, ZHAO Zhe, HOU Zhonge. Tethyan changes shaped global animal distribution[J]. Journal of Hebei University(Natural Science Edition), 2021, 41(5): 551-564.
[1] SUESS E. Are great ocean depths permanent?[J]. Natural Science, 1893, 2: 180-187. [2] STOW D. Vanished ocean: how Tethys reshaped the world[M]. New York: Oxford University Press, 2010. [3] MITTERMEIER R A, TURNER W R, LARSEN F W, et al. Global biodiversity conservation: the critical role of hotspots[M] //Biodiversity Hotspots. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011: 3-22. DOI:10.1007/978-3-642-20992-5_1. [4] TORTONESE E. Distribution and ecology of endemic elements in the Mediterranean fauna(fishes and echinoderms)[M] //Mediterranean Marine Ecosystems. Boston, MA: Springer US, 1985: 57-83. DOI:10.1007/978-1-4899-2248-9_4. [5] HOU Z, LI S Q. Tethyan changes shaped aquatic diversification[J]. Biol Rev, 2018, 93(2): 874-896. DOI:10.1111/brv.12376. [6] RENEMA W, BELLWOOD D R, BRAGA J C, et al. Hopping hotspots: global shifts in marine biodiversity[J]. Science, 2008, 321(5889): 654-657. DOI:10.1126/science.1155674. [7] DORNBURG A, MOORE J, BEAULIEU J M, et al. The impact of shifts in marine biodiversity hotspots on patterns of range evolution: Evidence from the Holocentridae(squirrelfishes and soldierfishes)[J]. Evolution, 2015, 69(1): 146-161. DOI:10.1111/evo.12562. [8] HARZHAUSER M, KROH A, MANDIC O, et al. Biogeographic responses to geodynamics: a key study all around the Oligo-Miocene Tethyan Seaway[J]. Zool Anz, 2007, 246(4): 241-256. DOI:10.1016/j.jcz.2007.05.001. [9] BELLWOOD D R, HERWERDEN L V, KONOW N. Evolution and biogeography of marine angelfishes(Pisces: Pomacanthidae)[J]. Mol Phylogenetics Evol, 2004, 33(1): 140-155. DOI:10.1016/j.ympev.2004.04.015. [10] JENKINS C N, PIMM S L, JOPPA L N. Global patterns of terrestrial vertebrate diversity and conservation[J]. PNAS, 2013, 110(28): E2602-E2610. DOI:10.1073/pnas.1302251110. [11] HOU Z, SKET B, FIŠER C, et al. Eocene habitat shift from saline to freshwater promoted Tethyan amphipod diversification [J]. PNAS, 2011, 108(35): 14533-14538. DOI: 10.1073/pnas.1104636108. [12] ZHAO Z, LI S Q. Extinction vs. rapid radiation: the juxtaposed evolutionary histories of coelotine spiders support the Eocene-Oligocene orogenesis of the Tibetan Plateau[J]. Syst Biol, 2017, 66(6): 988-1006. DOI:10.1093/sysbio/syx042. [13] RÖGL F. Palaeogeographic considerations for Mediterranean and Paratethys Seaways(Oligocene to Miocene)[J]. Ann Naturhist Mus Wien, 1998, 99A: 279-310. [14] SCOTESE C R. Paleomap Project[DB/OL]. 2002[2021-05-15]. http://www.scotese.com. [15] FAVRE A, PÄCKERT M, PAULS S U, et al. The role of the uplift of the Qinghai-Tibetan Plateau for the evolution of Tibetan biotas[J]. Biol Rev, 2015, 90(1): 236-253. DOI:10.1111/brv.12107. [16] POPOV S V, RÖGL F, ROZANOV A Y, et al. Lithological-Paleogeographic maps of Paratethys 10 maps Late Eocene to Pliocene[J]. Cour Forsch-institut Senckenberg, 2004, 250: 1-46. [17] VAN DER VOO R. Paleomagnetism of the Atlantic, Tethys and iapetus oceans[M]. Cambridge: Cambridge University Press, 1993. DOI:10.1017/cbo9780511524936. [18] GREINER B, NEUGEBAUER J. The rotations opening the Central and Northern Atlantic Ocean: compilation, drift lines, and flow lines[J]. Int J Earth Sci, 2013, 102(5): 1357-1376. DOI:10.1007/s00531-012-0860-6. [19] MILLER K G, KOMINZ M A, BROWNING J V, et al. The Phanerozoic record of global sea-level change[J]. Science, 2005, 310(5752): 1293-1298. DOI: 10.1126/science.1116412. [20] ROSENBAUM G, LISTER G S. Reconstruction of the evolution of the Alpine-Himalayan Orogen[J]. J Virt Expl, 2002, 8: 1-2. [21] SUN J M, JIANG M S. Eocene seawater retreat from the southwest Tarim Basin and implications for early Cenozoic tectonic evolution in the Pamir Plateau[J]. Tectonophysics, 2013, 588: 27-38. DOI:10.1016/j.tecto.2012.11.031. [22] CARRAPA B, DECELLES P G, WANG X, et al. Tectono-climatic implications of Eocene Paratethys regression in the Tajik basin of central Asia[J]. Earth Planet Sci Lett, 2015, 424: 168-178. DOI:10.1016/j.epsl.2015.05.034. [23] HAMON N, SEPULCHRE P, LEFEBVRE V, et al. The role of eastern Tethys seaway closure in the Middle Miocene Climatic Transition(ca. 14 Ma)[J]. Clim Past, 2013, 9(6): 2687-2702. DOI:10.5194/cp-9-2687-2013. [24] DUGGEN S, HOERNLE K, VAN DEN BOGAARD P, et al. Deep roots of the Messinian salinity crisis[J]. Nature, 2003, 422(6932): 602-606. DOI:10.1038/nature01553. [25] GARCIA-CASTELLANOS D, VILLASEÑOR A. Messinian salinity crisis regulated by competing tectonics and erosion at the Gibraltar arc[J]. Nature, 2011, 480(7377): 359-363. DOI:10.1038/nature10651. [26] GARCIA-CASTELLANOS D, ESTRADA F, JIMéNEZ-MUNT I, et al. Catastrophic flood of the Mediterranean after the Messinian salinity crisis[J]. Nature, 2009, 462(7274): 778-781. DOI:10.1038/nature08555. [27] ZAFFOS A, FINNEGAN S, PETERS S E. Plate tectonic regulation of global marine animal diversity[J]. PNAS, 2017, 114(22): 5653-5658. DOI:10.1073/pnas.1702297114. [28] UPCHURCH P, HUNN C A, NORMAN D B. An analysis of dinosaurian biogeography: evidence for the existence of vicariance and dispersal patterns caused by geological events[J]. Proc R Soc Lond B, 2002, 269(1491): 613-621. DOI:10.1098/rspb.2001.1921. [29] SAN MAURO D, VENCES M, ALCOBENDAS M, et al. Initial diversification of living amphibians predated the breakup of Pangaea[J]. Am Nat, 2005, 165(5): 590-599. DOI:10.1086/429523. [30] PYRON R A. Biogeographic analysis reveals ancient continental vicariance and recent oceanic dispersal in amphibians[J]. Syst Biol, 2014, 63(5): 779-797. DOI:10.1093/sysbio/syu042. [31] NAKATANI M, MIYA M, MABUCHI K, et al. Evolutionary history of Otophysi(Teleostei), a major clade of the modern freshwater fishes: Pangaean origin and Mesozoic radiation[J]. BMC Evol Biol, 2011, 11: 177. DOI:10.1186/1471-2148-11-177. [32] COPILAS,-CIOCIANU D, SIDOROV D, GONTCHAROV A. Adrift across tectonic plates: molecular phylogenetics supports the ancient Laurasian origin of old limnic crangonyctid amphipods[J]. Org Divers Evol, 2019, 19(2): 191-207. DOI:10.1007/s13127-019-00401-7. [33] HADDRATH O, BAKER A J. Multiple nuclear genes and retroposons support vicariance and dispersal of the palaeognaths, and an Early Cretaceous origin of modern birds[J]. Proc R Soc B, 2012, 279(1747): 4617-4625. DOI:10.1098/rspb.2012.1630. [34] OPATOVA V, HAMILTON C A, HEDIN M, et al. Phylogenetic systematics and evolution of the spider infraorder mygalomorphae using genomic scale data[J]. Syst Biol, 2020, 69(4): 671-707. DOI:10.1093/sysbio/syz064. [35] ANDúJAR C, FAILLE A, PéREZ-GONZáLEZ S, et al. Gondwanian relicts and oceanic dispersal in a cosmopolitan radiation of euedaphic ground beetles[J]. Mol Phylogenetics Evol, 2016, 99: 235-246. DOI:10.1016/j.ympev.2016.03.013. [36] SANMARTíN I, ENGHOFF H, RONQUIST F. Patterns of animal dispersal, vicariance and diversification in the Holarctic[J]. Biol J Linn Soc, 2001, 73(4): 345-390. DOI:10.1006/bijl.2001.0542. [37] SANMARTíN I, RONQUIST F. Southern hemisphere biogeography inferred by event-based models: plant versus animal patterns[J]. Syst Biol, 2004, 53(2): 216-243 DOI:10.1080/10635150490423430. [38] MALAQUIAS M A E, REID D G. Tethyan vicariance, relictualism and speciation: evidence from a global molecular phylogeny of the opisthobranch genus Bulla[J]. J Biogeogr, 2009, 36(9): 1760-1777. DOI:10.1111/j.1365-2699.2009.02118.x. [39] NéRAUDEAU D, MATHEY B. Biogeography and diversity of South Atlantic Cretaceous echinoids: implications for circulation patterns[J]. Palaeogeogr Palaeoclimatol Palaeoecol, 2000, 156(1/2): 71-88. DOI:10.1016/S0031-0182(99)00132-7. [40] KELLER G, PUNEKAR J, MATEO P. Upheavals during the Late Maastrichtian: Volcanism, climate and faunal events preceding the end-Cretaceous mass extinction[J]. Palaeogeogr Palaeoclimatol Palaeoecol, 2016, 441: 137-151. DOI:10.1016/j.palaeo.2015.06.034. [41] BELLWOOD D R, WAINWRIGHT P C. The history and biogeography of fishes on coral reefs[M] //Coral Reef Fishes. Amsterdam: Elsevier, 2002: 5-32. DOI:10.1016/b978-012615185-5/50003-7. [42] COWMAN P F, BELLWOOD D R. The historical biogeography of coral reef fishes: global patterns of origination and dispersal[J]. J Biogeogr, 2013, 40(2): 209-224. DOI:10.1111/jbi.12003. [43] BARDET N, HOUSSAYE A, RAGE J C, et al. The Cenomanian-Turonian(Late Cretaceous)radiation of marine squamates(Reptilia): the role of the Mediterranean Tethys[J]. Bull De La Société Géologique De France, 2008, 179(6): 605-622. DOI:10.2113/gssgfbull.179.6.605. [44] SCOTT R W, WAN X Q, SHA J G, et al. Rudists of Tibet and the Tarim basin, China: significance to Requieniidae phylogeny[J]. J Paleontol, 2010, 84(3): 444-465. DOI:10.1666/09-137.1. [45] FOREL M B, CRASQUIN S, BRüHWILER T, et al. Ostracod recovery after Permian-Triassic boundary mass-extinction: The south Tibet record[J]. Palaeogeogr Palaeoclimatol Palaeoecol, 2011, 308(1/2): 160-170. DOI:10.1016/j.palaeo.2011.02.013. [46] VILLIER L, NAVARRO N. Biodiversity dynamics and their driving factors during the Cretaceous diversification of Spatangoida(Echinoidea, Echinodermata)[J]. Palaeogeogr Palaeoclimatol Palaeoecol, 2004, 214(3): 265-282. DOI:10.1016/j.palaeo.2004.06.019. [47] PIOVESAN E K, BALLENT S, FAUTH G. Cretaceous palaeogeography of southern Gondwana from the distribution of the marine ostracod Majungaella Grekoff: New data and review[J]. Cretac Res, 2012, 37: 127-147. DOI:10.1016/j.cretres.2012.03.013. [48] JAUME D. Global diversity of spelaeogriphaceans & thermosbaenaceans(Crustacea; Spelaeogriphacea & Thermosbaenacea)in freshwater[J]. Hydrobiologia, 2008, 595(1): 219-224. DOI:10.1007/s10750-007-9017-1. [49] CHAND S, RADHAKRISHNA M, SUBRAHMANYAM C. India-East Antarctica conjugate margins: rift-shear tectonic setting inferred from gravity and bathymetry data[J]. Earth Planet Sci Lett, 2001, 185(1/2): 225-236. DOI:10.1016/S0012-821X(00)00349-6. [50] ZHU D C, WANG Q, ZHAO Z D. Constraining quantitatively the timing and process of continent-continent collision using magmatic record: Method and examples[J]. Sci China Earth Sci, 2017, 60(6): 1040-1056. DOI:10.1007/s11430-016-9041-x. [51] BRIGGS J C. The biogeographic and tectonic history of India[J]. J Biogeogr, 2003, 30(3): 381-388. DOI:10.1046/j.1365-2699.2003.00809.x. [52] YUAN Z Y, ZHANG B L, RAXWORTHY C J, et al. Natatanuran frogs used the Indian Plate to step-stone disperse and radiate across the Indian Ocean[J]. Natl Sci Rev, 2019, 6(1): 10-14. DOI:10.1093/nsr/nwy092. [53] KROSCH M N, SCHUTZE M K, ARMSTRONG K F, et al. A molecular phylogeny for the Tribe Dacini(Diptera: Tephritidae): Systematic and biogeographic implications[J]. Mol Phylogenetics Evol, 2012, 64(3): 513-523. DOI:10.1016/j.ympev.2012.05.006. [54] KLAUS S, MORLEY R J, PLATH M, et al. Biotic interchange between the Indian subcontinent and mainland Asia through time[J]. Nat Commun, 2016, 7: 12132. DOI:10.1038/ncomms12132. [55] LI J T, LI Y, KLAUS S, et al. Diversification of rhacophorid frogs provides evidence for accelerated faunal exchange between India and Eurasia during the Oligocene[J]. PNAS, 2013, 110(9): 3441-3446. DOI:10.1073/pnas.1300881110. [56] GRISMER J L, SCHULTE J A, ALEXANDER A, et al. The Eurasian invasion: phylogenomic data reveal multiple Southeast Asian origins for Indian Dragon Lizards[J]. BMC Evol Biol, 2016, 16(1): 1-11. DOI:10.1186/s12862-016-0611-6. [57] LI F Y, SHAO L L, LI S Q. Tropical niche conservatism explains the Eocene migration from India to Southeast Asia in ochyroceratid spiders[J]. Syst Biol, 2020, 69(5): 987-998. DOI:10.1093/sysbio/syaa006. [58] KAPPELMAN J, RASMUSSEN D T, SANDERS W J, et al. Oligocene mammals from Ethiopia and faunal exchange between Afro-Arabia and Eurasia[J]. Nature, 2003, 426(6966): 549-552. DOI:10.1038/nature02102. [59] ZHAO Z, SHAO L L, LI F Y, et al. Tectonic evolution of the Tethyan region created the Eurasian extratropical biodiversity hotspots: tracing Pireneitega spiders’ diversification history[J]. Ecography, 2020, 43(9): 1400-1411. DOI:10.1111/ecog.05044. [60] URIBE J E, WILLIAMS S T, TEMPLADO J, et al. Phylogenetic relationships of Mediterranean and north-east Atlantic cantharidinae and notes on stomatellinae(Vetigastropoda: Trochidae)[J]. Mol Phylogenetics Evol, 2017, 107: 64-79. DOI:10.1016/j.ympev.2016.10.009. [61] HRBEK T, MEYER A. Closing of the Tethys sea and the phylogeny of Eurasian killifishes(Cyprinodontiformes: Cyprinodontidae)[J]. J Evol Biol, 2003, 16(1): 17-36. DOI:10.1046/j.1420-9101.2003.00475.x. [62] COWMAN P F, BELLWOOD D R. Vicariance across major marine biogeographic barriers: temporal concordance and the relative intensity of hard versus soft barriers[J]. Proc Biol Sci, 2013, 280(1768): 20131541. DOI:10.1098/rspb.2013.1541. [63] PAGE T J, HUMPHREYS W F, HUGHES J M. Shrimps down under: evolutionary relationships of subterranean crustaceans from Western Australia(Decapoda: Atyidae: Stygiocaris)[J]. PLoS One, 2008, 3(2): e1618. DOI:10.1371/journal.pone.0001618. [64] NIKULINA E A, HANEL R, SCHÄFER P. Cryptic speciation and paraphyly in the cosmopolitan bryozoan Electra pilos—Impact of the Tethys closing on species evolution[J]. Mol Phylogenetics Evol, 2007, 45(3): 765-776. DOI:10.1016/j.ympev.2007.07.016. [65] EILERTSEN M H, MALAQUIAS M A E. Speciation in the dark: diversification and biogeography of the deep-sea gastropod genus Scaphander in the Atlantic Ocean[J]. J Biogeogr, 2015, 42(5): 843-855. DOI:10.1111/jbi.12471. [66] LOHMAN D J, DE BRUYN M, PAGE T, et al. Biogeography of the indo-Australian archipelago[J]. Annu Rev Ecol Evol Syst, 2011, 42(1): 205-226. DOI:10.1146/annurev-ecolsys-102710-145001. [67] WILLIAMS S T. Origins and diversification of Indo-West Pacific marine fauna: evolutionary history and biogeography of turban shells(Gastropoda, Turbinidae)[J]. Biol J Linn Soc, 2007, 92(3): 573-592. DOI:10.1111/j.1095-8312.2007.00854.x. [68] BELLWOOD D R, GOATLEY C H R, BELLWOOD O. The evolution of fishes and corals on reefs: form, function and interdependence[J]. Biol Rev, 2017, 92(2): 878-901. DOI:10.1111/brv.12259. [69] DUNCAN K M, MARTIN A P, BOWEN B W, et al. Global phylogeography of the scalloped hammerhead shark(Sphyrna lewini)[J]. Mol Ecol, 2006, 15(8): 2239-2251. DOI:10.1111/j.1365-294x.2006.02933.x. [70] BOURJEA J, LAPèGUE S, GAGNEVIN L, et al. Phylogeography of the green turtle, Chelonia mydas, in the Southwest Indian Ocean[J]. Mol Ecol, 2007, 16(1): 175-186. DOI:10.1111/j.1365-294X.2006.03122.x. [71] SUN J. The age of the Taklimakan desert[J]. Science, 2006, 312(5780): 1621. DOI:10.1126/science.1124616. [72] HOENEMANN M, NEIBER M T, HUMPHREYS W F, et al. Phylogenetic analysis and systematic revision of remipedia(Nectiopoda)from Bayesian analysis of molecular data[J]. J Crustacean Biol, 2013, 33(5): 603-619. DOI:10.1163/1937240X-00002179. [73] HARZHAUSER M, PILLER W E. Benchmark data of a changing sea—Palaeogeography, Palaeobiogeography and events in the Central Paratethys during the Miocene[J]. Palaeogeogr Palaeoclimatol Palaeoecol, 2007, 253(1/2): 8-31. DOI:10.1016/j.palaeo.2007.03.031. [74] MEYNARD C N, MOUILLOT D, MOUQUET N, et al. A phylogenetic perspective on the evolution of Mediterranean teleost fishes[J]. PLoS One, 2012, 7(5): e36443. DOI:10.1371/journal.pone.0036443. [75] CHATTERJEE S, GOSWAMI A, SCOTESE C R. The longest voyage: Tectonic, magmatic, and paleoclimatic evolution of the Indian plate during its northward flight from Gondwana to Asia[J]. Gondwana Res, 2013, 23(1): 238-267. DOI:10.1016/j.gr.2012.07.001. [76] HOU Z, FU J Z, LI S Q. A molecular phylogeny of the genus Gammarus(Crustacea: Amphipoda)based on mitochondrial and nuclear gene sequences[J]. Mol Phylogenetics Evol, 2007, 45(2): 596-611. DOI:10.1016/j.ympev.2007.06.006. [77] LU X F, GE D Y, XIA L, et al. The evolution and paleobiogeography of flying squirrels(Sciuridae, pteromyini)in response to global environmental change[J]. Evol Biol, 2013, 40(1): 117-132. DOI:10.1007/s11692-012-9191-6. [78] PROVAN J, BENNETT K D. Phylogeographic insights into cryptic glacial refugia[J]. Trends Ecol Evol, 2008, 23(10): 564-571. DOI:10.1016/j.tree.2008.06.010. [79] XU W, DONG W J, FU T T, et al. Herpetological phylogeographic analyses support a Miocene focal point of Himalayan uplift and biological diversification[J]. Natl Sci Rev, 2021,8:nwaa263. DOI:10.1093/nsr/nwaa263. [80] PÄCKERT M, MARTENS J, SUN Y H, et al. Horizontal and elevational phylogeographic patterns of Himalayan and Southeast Asian forest passerines(Aves: Passeriformes)[J]. J Biogeogr, 2012, 39(3): 556-573. DOI:10.1111/j.1365-2699.2011.02606.x. [81] LENEVEU J, CHICHVARKHIN A, WAHLBERG N. Varying rates of diversification in the genus Melitaea(Lepidoptera: Nymphalidae)during the past 20 million years[J]. Biol J Linn Soc, 2009, 97(2): 346-361. DOI:10.1111/j.1095-8312.2009.01208.x. [82] PRICE T D, HOOPER D M, BUCHANAN C D, et al. Niche filling slows the diversification of Himalayan songbirds[J]. Nature, 2014, 509(7499): 222-225. DOI:10.1038/nature13272. [83] LEI F M, QU Y H, SONG G. Species diversification and phylogeographical patterns of birds in response to the uplift of the Qinghai-Tibet Plateau and Quaternary glaciations[J]. Curr Zool, 2014, 60(2): 149-161. DOI:10.1093/czoolo/60.2.149. [84] STUDENCKA B, JASIONOWSKI M. Bivalves from the Middle Miocene reefs of Poland and Ukraine: a new approach to Badenian/Sarmatian boundary in the Paratethys[J]. Acta Geologica Polonica, 2011, 61(1): 79-114. [85] LUKENEDER S, ZUSCHIN M, HARZHAUSER M, et al. Spatiotemporal signals and palaeoenvironments of endemic molluscan assemblages in the marine system of the Sarmatian paratethys[J]. Acta Palaeontol Polonica, 2011, 56(4): 767-784. DOI:10.4202/app.2010.0046. [86] HARZHAUSER M, MANDIC O. Neogene lake systems of Central and South-Eastern Europe: Faunal diversity, gradients and interrelations[J]. Palaeogeogr Palaeoclimatol Palaeoecol, 2008, 260(3/4): 417-434. DOI:10.1016/j.palaeo.2007.12.013. [87] BILANDZˇIJA H, MORTON B, PODNAR M, et al. Evolutionary history of relict Congeria(Bivalvia: Dreissenidae): unearthing the subterranean biodiversity of the Dinaric Karst[J]. Front Zool, 2013, 10(1): 1-18. DOI:10.1186/1742-9994-10-5. [88] HOU Z, SKET B. A review of Gammaridae(Crustacea: Amphipoda): the family extent, its evolutionary history, and taxonomic redefinition of genera[J]. Zool J Linn Soc, 2016, 176(2): 323-348. DOI:10.1111/zoj.12318. [89] SEEHAUSEN O, WAGNER C E. Speciation in freshwater fishes[J]. Annu Rev Ecol Evol Syst, 2014, 45(1): 621-651. DOI:10.1146/annurev-ecolsys-120213-091818. [90] YAMANOUE Y, MIYA M, DOI H, et al. Multiple invasions into freshwater by pufferfishes(Teleostei: Tetraodontidae): a mitogenomic perspective[J]. PLoS One, 2011, 6(2): e17410. DOI:10.1371/journal.pone.0017410. [91] LOVEJOY N R, ALBERT J S, CRAMPTON W G R. Miocene marine incursions and marine/freshwater transitions: Evidence from Neotropical fishes[J]. J S Am N Earth Sci, 2006, 21(1/2): 5-13. DOI:10.1016/j.jsames.2005.07.009. [92] HOLZNAGEL W E, COLGAN D J, LYDEARD C. Pulmonate phylogeny based on 28S rRNA gene sequences: a framework for discussing habitat transitions and character transformation[J]. Mol Phylogenetics Evol, 2010, 57(3): 1017-1025. DOI:10.1016/j.ympev.2010.09.021. [93] ADAMOWICZ S J, MENU-MARQUE S, HALSE S A, et al. The evolutionary diversification of the Centropagidae(Crustacea, Calanoida): a history of habitat shifts[J]. Mol Phylogenetics Evol, 2010, 55(2): 418-430. DOI:10.1016/j.ympev.2009.12.008. [94] PENZO E, GANDOLFI G, BARGELLONI L, et al. Messinian salinity crisis and the origin of freshwater lifestyle in western Mediterranean gobies[J]. Mol Biol Evol, 1998, 15(11): 1472-1480. DOI:10.1093/oxfordjournals.molbev.a025874. [95] HUYSE T, HOUDT J V, VOLCKAERT F A M. Paleoclimatic history and vicariant speciation in the “sand goby” group(Gobiidae, Teleostei)[J]. Mol Phylogenetics Evol, 2004, 32(1): 324-336. DOI:10.1016/j.ympev.2003.11.007. [96] CARRAPA B, DECELLES P G, WANG X, et al. Tectono-climatic implications of Eocene Paratethys regression in the Tajik basin of central Asia[J]. Earth Planet Sci Lett, 2015, 424: 168-178. DOI:10.1016/j.epsl.2015.05.034. [97] MANAFZADEH S, STAEDLER Y M, CONTI E. Visions of the past and dreams of the future in the Orient: the Irano-Turanian region from classical botany to evolutionary studies[J]. Biol Rev, 2017, 92(3): 1365-1388. DOI:10.1111/brv.12287. [98] ZHENG Y C, FU J Z, LI S Q. Toward understanding the distribution of Laurasian frogs: a test of Savage's biogeographical hypothesis using the genus Bombina[J]. Mol Phylogenetics Evol, 2009, 52(1): 70-83. DOI:10.1016/j.ympev.2009.03.026. [99] GUO X G, DAI X, CHEN D L, et al. Phylogeny and divergence times of some racerunner lizards(Lacertidae: Eremias)inferred from mitochondrial 16S rRNA gene segments[J]. Mol Phylogenetics Evol, 2011, 61(2): 400-412. DOI:10.1016/j.ympev.2011.06.022. [100] ZHANG Q, XIA L, KIMURA Y, et al. Tracing the origin and diversification of dipodoidea(order: Rodentia): evidence from fossil record and molecular phylogeny[J]. Evol Biol, 2013, 40(1): 32-44. DOI:10.1007/s11692-012-9167-6. [101] NÉRAUDEAU D. Hemiasterid echinoids(Echinodermata: Spatangoida)from the Cretaceous Tethys to the present-day Mediterranean[J]. Palaeogeogr Palaeoclimatol Palaeoecol, 1994, 110(3/4): 319-344. DOI:10.1016/0031-0182(94)90090-6. [102] LANDINI W, SORBINI C. Evolutionary trends in the Plio-Pleistocene ichthyofauna of the Mediterranean Basin: nature, timing and magnitude of the extinction events[J]. Quat Int, 2005, 131(1): 101-107. DOI:10.1016/j.quaint.2004.07.006. [103] DURAN S, PASCUAL M, TURON X. Low levels of genetic variation in mtDNA sequences over the western Mediterranean and Atlantic range of the sponge Crambe crambe(Poecilosclerida)[J]. Mar Biol, 2004, 144(1): 31-35. DOI:10.1007/s00227-003-1178-5. [104] ORSZAG-SPERBER F. Changing perspectives in the concept of “Lago-Mare” in Mediterranean Late Miocene evolution[J]. Sediment Geol, 2006, 188/189: 259-277. DOI:10.1016/j.sedgeo.2006.03.008. [105] SOLÀE, SLUYS R, GRITZALIS K, et al. Fluvial basin history in the northeastern Mediterranean region underlies dispersal and speciation patterns in the genus Dugesia(Platyhelminthes, Tricladida, Dugesiidae)[J]. Mol Phylogenetics Evol, 2013, 66(3): 877-888. DOI:10.1016/j.ympev.2012.11.010. [106] JESSE R, GRUDINSKI M, KLAUS S, et al. Evolution of freshwater crab diversity in the Aegean region(Crustacea: Brachyura: Potamidae)[J]. Mol Phylogenetics Evol, 2011, 59(1): 23-33. DOI:10.1016/j.ympev.2010.12.011. [107] AKIN C,, CAN BILGIN C, BEERLI P, et al. Phylogeographic patterns of genetic diversity in eastern Mediterranean water frogs were determined by geological processes and climate change in the Late Cenozoic[J]. J Biogeogr, 2010, 37(11): 2111-2124. DOI:10.1111/j.1365-2699.2010.02368.x. [108] DURAND J D, BIANCO P G, LAROCHE J, et al. Insight into the origin of endemic Mediterranean ichthyofauna: phylogeography of Chondrostoma genus(Teleostei, Cyprinidae)[J]. J Hered, 2003, 94(4): 315-328. DOI:10.1093/jhered/esg074. [109] ZAKŠEK V, SKET B, TRONTELJ P. Phylogeny of the cave shrimp Troglocaris: Evidence of a young connection between Balkans and Caucasus[J]. Mol Phylogenetics Evol, 2007, 42(1): 223-235. DOI:10.1016/j.ympev.2006.07.009. [110] TRONTELJ P, DOUADY C J, FIŠER C, et al. A molecular test for cryptic diversity in ground water: how large are the ranges of macro-stygobionts?[J]. Freshw Biol, 2009, 54(4): 727-744. DOI:10.1111/j.1365-2427.2007.01877.x. [111] SKET B. Origins of the Dinaric troglobiotic mussel and its correct taxonomical classification. Congeria or Mytilopsis(Bivalvia: Dreissenidae)?[J]. Acta Biologica Slovenica, 2011, 54: 67-76. [112] VEROVNIK R, SKET B, TRONTELJ P. The colonization of Europe by the freshwater crustacean Asellus aquaticus(Crustacea: Isopoda)proceeded from ancient refugia and was directed by habitat connectivity[J]. Mol Ecol, 2005, 14(14): 4355-4369. DOI:10.1111/j.1365-294X.2005.02745.x. [113] TRONTELJ P, BLEJEC A, FIŠER C. Ecomorphological convergence of cave communities[J]. Evolution, 2012, 66(12): 3852-3865. DOI:10.1111/j.1558-5646.2012.01734.x. [114] JUAN C, GUZIK M T, JAUME D, et al. Evolution in caves: Darwin's ‘wrecks of ancient life’ in the molecular era[J]. Mol Ecol, 2010, 19(18): 3865-3880. DOI:10.1111/j.1365-294X.2010.04759.x. [115] NEIBER M T, HARTKE T R, STEMME T, et al. Global biodiversity and phylogenetic evaluation of remipedia(Crustacea)[J]. PLoS One, 2011, 6(5): e19627. DOI:10.1371/journal.pone.0019627. [116] BAUZà-RIBOT M M, JUAN C, NARDI F, et al. Mitogenomic phylogenetic analysis supports continental-scale vicariance in subterranean thalassoid crustaceans[J]. Curr Biol, 2012, 22(21): 2069-2074. DOI:10.1016/j.cub.2012.09.012. [117] MEYRAN, TABERLET. Mitochondrial DNA polymorphism among alpine populations of Gammarus lacustris(Crustacea, Amphipoda)[J]. Freshw Biol, 1998, 39(2): 259-265. DOI:10.1046/j.1365-2427.1998.00277.x. [118] ALTHER R, FIŠER C, ALTERMATT F. Description of a widely distributed but overlooked amphipod species in the European Alps[J]. Zool J Linn Soc, 2017, 179: 751-766. DOI:10.1111/zoj.12477. [119] VENTURA M, PETRUSEK A, MIRó A, et al. Local and regional founder effects in lake zooplankton persist after thousands of years despite high dispersal potential[J]. Mol Ecol, 2014, 23(5): 1014-1027. DOI:10.1111/mec.12656. ( |
[1] | 王耀卓,张文强,张俊霞. 不同组装软件在系统发育基因组学中的应用比较[J]. 河北大学学报(自然科学版), 2023, 43(2): 171-178. |
[2] | 张蒙,孙枭琼,方楠,曹智涵,王宏伟. DNA条形码技术在白洋淀流域浮游动物调查中的应用[J]. 河北大学学报(自然科学版), 2019, 39(2): 217-224. |
[3] | 陈思雨, 王丽娜, 杨惠琪, 陈玉, 张瑾, 吕志堂. 白洋淀抗重金属细菌多样性及其与生态因子相关性[J]. 河北大学学报(自然科学版), 2018, 38(6): 664-672. |
[4] | 何静超,胡岚岚,郭晨辉,张锋. 小五台山蟹蛛DNA条形码分子鉴定[J]. 河北大学学报(自然科学版), 2016, 36(3): 286-292. |
[5] | 刘杉杉,董赛红,任国栋. 中国齿甲属Uloma系统发育关系[J]. 河北大学学报(自然科学版), 2011, 31(4): 427-433. |
[6] | 安雯婷,任国栋,柳峰松. 中国漠王族干标本DNA提取及部分类群发育关系[J]. 河北大学学报(自然科学版), 2010, 30(2): 190-195,200. |
[7] | 贺学礼,唐宏亮,张玉霄. 中国岩黄耆属(Hedysarum L.)植物区系生态地理分布[J]. 河北大学学报(自然科学版), 2006, 26(6): 625-630,648. |
[8] | 叶晔,蒋鹏,任国栋. 31属拟步甲的防御腺特征与系统发育关系初析[J]. 河北大学学报(自然科学版), 2003, 23(3): 279-292. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||