[1] DEGRASSI G, DIVITA S, ELIASMIRO J, et al. Higgs mass and vacuum stability in the standard model at NNLO[J]. Journal of High Energy Physics, 2012(8):98-133.DOI:10.1007/JHEP08(2012)098. [2] 赵树民,张逸宁,陈标.超对称模型下μ(~v)x-顶点的在壳重整化[J].河北大学学报(自然科学版), 2013, 33(2):139-141.DOI:10.3969/j.issn.1000-1565.2013.02.006. [3] SHER M, Electroweak Higgs potential and vacuum stability[J]. Physics Reports, 1989, 179(5-6):273-418. DOI:10.1016/0370-1573(89)90061-6. [4] COLEMAN S R,.WEINBERG E J. Radiative corrections as the origin of spontaneous symmetry breaking[J]. Physical Review D, 1973, 7(6):1888-1909.DOI:10.1103/PhysRevD.7.1888. [5] SIEGEL W. Supersymmetric dimensional regularization via dimensional reduction[J]. Physics Letters B, 1979, 84(2):193-196.DOI: 10.1016/0370-2693(79)90282-X. [6] ROSIEK J. Complete set of Feynman rules for the MSSM[J]. Physical Review D, 1990,41(11):3464-3501. DOI: 10.1103/PhysRevD.41.3464. [7] 段平光,王芳,赵树民.超对称模型下vvZ顶点的在壳重整化[J].河北大学学报(自然科学版), 2011,31(1):24-26.DOI:10.3969/j.issn.1000-1565.2011.01.006. [8] SYMANZIK K. Renormalizable models with simple symmetry breaking[J]. Communications in Mathematical Physics, 1970, 16(1):48-80.DOI: 10.1007/BF01645494. [9] DANNENBERG A. Dysfunctional methods and the effective potential[J]. Physics Letters B, 1988, 202(1):110-116.DOI: 10.1016/0370-2693(88)90862-3. [10] CAMARGOMOLINA J E, O'LEARY B, POROD W, et al. Vevacious: a tool for finding the global minima of one-loop effective potentials with many scalars[J]. European Physical Journal C,2013,73(10):2588.DOI:10.1140/epjc/s10052-013-2588-2. [11] FLORIAN S. Exploring new models in all detail with SARAH[J]. Advances in High Energy Physics, 2015, 2015:1-126. [12] ZYLA P A, BARNETT R M, BERINGER J, et al. Review of particle physics[J]. Prog Theor Exp Phys, 2020(8):31-32.DOI: 10.1093/ptep/ptaa104. ( |