[1] PENKOV I B. Borel-Weil-Bott theory for classical Lie superalgebras[J]. J Sov Math, 1990, 51(1): 2108-2140. DOI:10.1007/BF01098186. [2] BRUNDAN J. Kazhdan-Lusztig polynomials and character formulae for the Lie superalgebra gl(m|n)[J]. J Amer Math Soc, 2003, 16(1): 185-231. DOI:10.1090/s0894-0347-02-00408-3. [3] KAC V G. Lie superalgebras[J]. Adv Math, 1977, 26(1): 8-96. DOI:10.1016/0001-8708(77)90017-2. [4] KAC V G. Characters of typical representations of classical lie superalgebras[J]. Commun Algebra, 1977, 5(8): 889-897. DOI:10.1080/00927877708822201. [5] SU Y C, ZHANG R B. Cohomology of lie superalgebras slm|nand osp2|2n[J]. Proc Lond Math Soc, 2007, 94(1): 91-136. DOI:10.1112/plms/pdl005. [6] WANG S J, LIU W D. The first cohomology of sl2|1 with coefficients in χ-reduced Kac modules and simple modules[J]. J Pure Appl Algebra, 2020, 224(11): 106403. DOI:10.1016/j.jpaa.2020.106403. [7] 郑克礼,张永正.系数在模李超代数W(m, 3, 1)上的gl(2, F)的一维上同调[J].数学年刊A辑(中文版), 2014, 35(6): 717-728. [8] 孙丽萍,远继霞,刘文德.李超代数gl(m,n)到Witt型李超代数的低维上同调[J].数学的实践与认识,2013,43(8):238-243. [9] SUN L P, LIU W D, WU B Y. Low-dimensional cohomology of lie superalgebra slm|n with coefficients in witt or special superalgebras[J]. Indag Math, 2014, 25(1): 59-77. DOI:10.1016/j.indag.2013.07.006. [10] SHU B, ZHANG C W. Restricted representations of the witt superalgebras[J]. J Algebra, 2010, 324(4): 652-672. DOI:10.1016/j.jalgebra.2010.04.032. [11] DUAN F F, SHU B. Representations of the witt superalgebra W(2)[J]. J Algebra, 2013, 396: 272-286. DOI:10.1016/j.jalgebra.2013.07.034. ( |