[1] WEI J J, LIU Y Y, ZHANG M R, et al. Blue-LED-excitable NIR-II luminescent lanthanide-doped SrS nanoprobes for ratiometric thermal sensing[J]. Sci China Mater, 2022, 65(4): 1094-1102. DOI:10.1007/s40843-021-1801-8. [2] HU T, GAO Y, MOLOKEEV M, et al. Non-stoichiometry in Ca2Al2SiO7 enabling mixed-valent europium toward ratiometric temperature sensing[J]. Sci China Mater, 2019, 62(12): 1807-1814. DOI:10.1007/s40843-019-1202-x. [3] 周慧丽,吴锋,张志宏,等.Lu2O3: Er3+/Yb3+荧光材料的上转换发光及其温度传感特性[J].发光学报, 2022, 43(2): 192-200. [4] 李晓晓,李蕴乾,汪欣,等.高灵敏度下转换光学测温材料: NaGd(WO4)2: Yb3+/Er3+[J].中国光学, 2019, 12(3): 596-605. [5] 周佳,包琪,戴武斌,等. Ce3+/Tb3+双掺杂SrAl2Si2O8荧光粉的发光性能及其在测温领域的应用[J].武汉工程大学学报, 2020, 42(4): 411-414. DOI:10.19843/j.cnki.cn42-1779/tq.201909034. [6] LI C X, CHEN B W, DENG D G, et al. Ratiometric optical thermometer with high-sensitive temperature sensing based on synergetic luminescence of Ce3+-Eu2+ in LiSr4(BO3)3 phosphors[J]. J Alloys Compd, 2020, 838: 155675. DOI:10.1016/j.jallcom.2020.155675. [7] KIM D, PARK D, OH N, et al. Luminescent properties of rare earth fully activated apatites, LiRE9(SiO4)6O2(RE=Ce, Eu, and Tb): site selective crystal field effect[J]. Inorg Chem, 2015, 54(4): 1325-1336. DOI:10.1021/ic502113a. [8] 张靖雪.几种磷灰石结构发光材料的温度传感性能研究[D].北京:中国地质大学,2021. [9] ZHOU W, PAN F, ZHOU L, et al. Site occupancies, luminescence, and thermometric properties of LiY9(SiO4)6O2: Ce3+ phosphors[J]. Inorg Chem, 2016, 55(20): 10415-10424. DOI:10.1021/acs.inorgchem.6b01656. [10] LI K, FAN J, SHANG M M, et al. Sr2Y8(SiO4)6O2: Bi3+/Eu3+: a single-component white-emitting phosphor via energy transfer for UV w-LEDs[J]. J Mater Chem C, 2015, 3(38): 9989-9998. DOI:10.1039/c5tc01993a. [11] ZHENG L, ZHENG B, XIA H P, et al. Color-tunable emission and non-contact optical temperature sensing performance in NaY9Si6O26: Ce3+, Eu3+phosphors[J]. Mater Res Bull, 2021, 138: 111210. DOI:10.1016/j.materresbull.2021.111210. [12] XIE M B, XIE W, ZHU G X, et al. Luminescence properties of Ce3+ in orthosilicate oxyapatite NaY9(SiO4)6O2[J]. Luminescence, 2017, 32(7): 1157-1161. DOI:10.1002/bio.3303. [13] DAVID B S. Langes handbook of chemistry[M]. 12th edition. New York: McGraw-hill Book Co, 1980. [14] COOPER M J. The analysis of powder diffraction data[J]. Acta Crystallogr Sect A, 1982, 38(2): 264-269. DOI:10.1107/S0567739482000564. [15] MA P C, SONG Y H, YUAN B, et al. Photoluminescence, energy transfer, and thermal stability of BaAl2Si2O8: Bi3+, Tb3+ phosphors for w-LEDs[J]. Ceram Int, 2017, 43(1): 60-70. DOI:10.1016/j.ceramint.2016.08.161. [16] SUN W Z, PANG R, LI H M, et al. Investigation of a novel color tunable long afterglow phosphor KGaGeO4: Bi3+: luminescence properties and mechanism[J]. J Mater Chem C, 2017, 5(6): 1346-1355. DOI:10.1039/c6tc04012h. [17] ZHOU H, WANG Q, JIN Y. Temperature dependence of energy transfer in tunable white light-emitting phosphor BaY2Si3O10: Bi3+, Eu3+ for near UV LEDs[J]. J Mater Chem C, 2015, 2015(3): 11151-11162. DOI:10.1039/C5TC02514A. [18] 郑志刚.Bi3+, Eu3+共掺荧光粉的能量传递、可调发光及温度传感性能研究[D].金华: 浙江师范大学, 2020. [19] DORENBOS P. Crystal field splitting of lanthanide 4fn-15d 15d-levels in inorganic compounds[J]. J Alloys Compd, 2002, 341(1/2): 156-159. DOI:10.1016/S0925-8388(02)00056-7. [20] SHEN Y Y, CHEN Y, CHEN L, et al. Dual emitting from Bi3+/Eu3+ co-activated Sr3La2Ge3O12 phosphor for optical thermometry[J]. Opt Mater, 2021, 115: 111036. DOI:10.1016/j.optmat.2021.111036. [21] 高世杰,王华,张珊珊,等. Na2Ca2.92Si6O16: 0.08Eu3+荧光粉的制备及其发光特性研究[J].华南师范大学学报(自然科学版), 2019, 51(4): 21-25. [22] DEXTER D L. A theory of sensitized luminescence in solids[J]. J Chem Phys, 1953, 21(5): 836-850. DOI:10.1063/1.1699044. [23] 张文娜.Bi3+, Eu3+共掺杂荧光粉的可调发光及性能研究[D].金华:浙江师范大学, 2021. [24] XIE R J, HIROSAKI N, KIMURA N, et al. 2-phosphor-converted white light-emitting diodes using oxynitride/nitride phosphors[J]. Appl Phys Lett, 2007, 90(19): 191101. DOI:10.1063/1.2737375. [25] DORENBOS P. Thermal quenching of Eu2+5d-4f luminescence in inorganic compounds[J]. J Phys: Condens Matter, 2005, 17(50): 8103-8111. DOI:10.1088/0953-8984/17/50/027. [26] ZHU Q Q, WANG L, HIROSAKI N, et al. Extra-broad band orange emitting Ce3+-doped Y3Si5N9O phosphor for solid-state lighting: electronic, crystal structures and luminescence properties[J]. Chem Mater, 2016, 28(13): 4829-4839. DOI: 10.1021/acs.chemmater.6b02109. [27] ZHI G, ZHEN G, JIA F, et al. Luminescence and self-referenced optical temperature sensing performance in Ca2YZr2Al3O12:Bi3+/Eu3+ phosphors[J]. Ceram Int, 2020, 46(5): 6154-6159. DOI: 10.1016/j.ceramint.2019.11.081. [28] CHEN X, ZHENG Z, TENG L, et al. Self-calibrated optical thermometer based on luminescence from SrLu2O4:Bi3+,Eu3+ phosphors[J]. RSC Adv, 2018, 8(62): 35422-35428. DOI: 10.1039/C8RA06358C. [29] PENG X S, CHEN J, CHEN Y H, et al. Optical thermometry based fluorescence intensity ratio in Y2Mg2Al2Si2O12:Bi3+,Eu3+ phosphors[J]. J Alloys Compd, 2021, 885(10): 161010. DOI: 10.1016/j.jallcom.2021.161010. [30] LI K, VAN DEUN R. Site-Bi3+ and Eu3+ dual emissions in color-tunable Ca2Y8(SiO4)6O2:Bi3+/Eu3+ phosphors prepared via sol-gel synthesis for potentially ratiometric temperature sensing[J]. J Alloys Compd, 2019, 787(30): 86-95. DOI: 10.1016/j.jallcom.2019.02.087. [31] SUN Z, JIA M, WEI Y, et al. Constructing new thermally coupled levels based on different emitting centers for high sensitive optical thermometer[J]. Chem Eng J, 2020, 381(1): 122654. DOI: 10.1016/j.cej.2019.122654. [32] LI J Y, HOU D, ZHANG Y, et al. Luminescence, energy transfer and temperature sensing property of Ce3+,Dy3+ doped LiY9(SiO4)6O2 phosphors[J]. J Lumin, 2019, 213: 184-190. DOI: 10.1016/j.jlumin.2019.05.027. [33] CADIAU A, BRITES C D, COSTA P M, et al. Ratiometric nanothermometer based on an emissive Ln3+-organic framework[J]. ACS Nano, 2013, 7(8): 7213-7218. DOI: 10.1021/nn402608w. ( |