河北大学学报(自然科学版) ›› 2023, Vol. 43 ›› Issue (1): 16-20.DOI: 10.3969/j.issn.1000-1565.2023.01.003

• • 上一篇    下一篇

|x|在扩展的Chebyshev结点的有理插值

李建俊1,张慧明2   

  • 收稿日期:2022-05-14 出版日期:2023-01-25 发布日期:2023-02-22
  • 作者简介:李建俊(1979—),女,河北张家口人,河北师范大学讲师,主要从事算法设计研究.E-mail:lijianjun5001@126.com
  • 基金资助:
    河北省自然科学基金资助项目(A2019403169)

On rational interpolation to |x| at the extended Chebyshev nodes

LI Jianjun1, ZHANG Huiming2   

  1. 1.Minzu College Affaliated to Hebei Normal University, Shijiazhuang 050091, China; 2.College of Mathematics and Physics, Hebei GEO University, Shijiazhuang 050031, China
  • Received:2022-05-14 Online:2023-01-25 Published:2023-02-22

摘要: 研究|x|在扩展的Chebyshev结点的有理插值,得到逼近阶为O(1/(nln n)).通过数值计算发现相同逼近阶的误差与结点的密集度、结点所在曲线的凹凸性有关.

关键词: 扩展的Chebyshev结点, 有理插值, Newman型有理算子, 逼近阶, 误差

Abstract: In this paper, the rational interpolation of |x| at the extended Chebyshev nodes was studied. That the exact order of approximation is O(1/(nln n))was obtained. Through numerical calculation, it is found that the error of the same approximation order is related to the density of nodes and the concavity and convexity of the curve where the nodes are located.

Key words: extended Chebyshev nodes, rational interpolation, Newman-type rational operators, order of approximation, error

中图分类号: