[1] KRYLOV N M, BOGOLYUBOV N N. Les propriétés ergodiques des suites des probabilitiés en chaine [J]. CR Paris, 1937, 204:1454-1456. [2] GIKHMAN I I. On a theorem of NN Bogoliubov [J]. Ukrain Mat Zh, 1952, 4(2): 215-218. [3] VOLOSOV V M. Averaging in systems of ordinary differential equations [J]. Russ Math Surv, 1962, 17(6):1-126.DOI: 10.1070/rm1962vo17n06abeh001130. [4] KHASMINSKII R Z. On the principle of averaging the itô stochastic differential equations [J]. Kybernetika, 1968, 4(3): 260-279. [5] LIU D. Strong convergence of principle of averaging for multiscale stochastic dynamical system [J]. Commun Math Sci, 2010, 8(4):999-1020. DOI: 10.4310/cms.2010.v8.n4.all. [6] GIVON D. Strong convergence rate for two-time-scale jump-diffusion stochastic differential systems [J]. Multiscale Modeling & Simul, 2007, 6(2):577-594. DOI: 10.1137/060673345. [7] LIU D. Strong convergence rate of principle of averaging for jump-diffusion processes [J]. Front Math China, 2012, 7(2):305-320. DOI: 10.1007/s11464-012-0193-6. [8] WAINRIB G. Double averaging principle for periodically forced stochastic slow-fast systems [J]. Electron Commun Probab, 2013, 18(51):1-12. DOI: 10.1214/ecp.v18-1975. [9] XU J, MIAO Y, LIU J C. Strong averaging principle for two-time-scale SDEs with non-Lipschitz coefficients [J]. J Math Anal App, 2018, 468(1):116-140. DOI: 10.1016/j.jmaa.2018.07.039. [10] YIN G, ZHANG Q. Continuous-time Markov chains and applications: A singular perturbation approach [M]. New York: Spring, 1998. [11] YIN G, YANG H. Two-time-scale jump-diffusion models with Markovian switching regimes [J]. Stoch Rep Group, 2004, 76(2):77-99. DOI: 10.1080/10451120410001696261. [12] YIN G, TALAFHA Y, XI F. Stochastic liénard equations with random switching and two-time scales [J]. Commun Stat Theory Methods, 2014, 43(7):1533-1547. DOI: 10.1080/03610926.2012.741741. [13] DUPIRE B. Functional Itô calculus[J]. Quant Finance, 2019, 19(5):721-729.DOI: 10.1080/14697688.2019.1575974. [14] WU F, YIN G. An averaging principle for two-time-scale stochastic functional differential equations [J]. J Differ Equ, 2020, 269(1):1037-1077. DOI: 10.1016/j.jde.2019.12.024. [15] BALLY V, CARAMELLINO L, CONT R. Stochastic integration by parts and functional Itô calculus[M]. Switzerland: Springer International Publishing, 2016. ( |